Public Roads

A JOURNAL OF HIGHWAY RESEARCH

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

Public Roads
 A JOURNAL OF HIGHWAY RESEARCH

Published Bimonthly
Harry C. Secrest, Managing Editor - Fran Faulkner, Editor

February 1972/Vol. 36, No. 12
U.S. DEPARTMENT OF TRANSPORTATION JOHN A. VOLPE, Secretary

FEDERAL HIGHWAY ADMINISTRATION F. C. TURNER, Administrator

CONTENTS

Articles

Improvement of Visibility for Night Driving,
by Richard N. Schwab and Roger H. Hemion_-- 257
Travel by Motor Vehicles in 1970,
by W. Johnson Page
Highway Bridge Field Tests in the United States, 1948-70,
by Conrad P: Heins, Jr., and Charles F. Galambos

Departments

Digest of Recent Research and

Development Results

Highway Research and Development
Reports Available From National
Technical Information Service

FEDERAL HIGHWAY ADMINISTRATION U.S. DEPARTMENT OF TRANSPORTATION Washington, D.C. 20590

FHWA REGIONAL OFFICES

No. 1. 4 Normanskill Blvd,. Delmar, N.Y. 12054. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, Vermont, and Puerto Rico.
No. 3. 1633 Federal Building, 31 Hopkins Plaza, Baltimore, Md. 21201.
Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia.
No. 4. Suite 200, 1720 Peachtree Rd., N.W., Atlanta, Ga. 30309.
Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee.
No. 5. 18209 Dixie Highway, Homewood, III. 60430.

Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin.
No. 6. 819 Taylor St., Fort Worth, Tex. 76102. Arkansas, Louisiana, New Mexico, Oklahoma, and Texas.
No. 7. 6301 Rockhill Rd., Kansas City, Mo. 64131. lowa, Kansas, Missouri, and Nebraska.
No. 8. Denver Federal Center, Building 40, Denver, Colo. 80225.
Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming.
No. 9. 450 Golden Gate Ave., Box 36096, San Francisco, Calif. 94102.
Arizona, California, Hawaii, and Nevada.
No. 10. 412 Mohawk Building, 222 S.W. Morrison St., Portland, Oreg. 97204.
Alaska, Idaho, Oregon, and Washington.
No. 15. 1000 North Glebe Rd., Arlington, Va. 22201.

Eastern Federal Highway Projects.
No. 19. P.O. Box No. 10051, San Jose, Costa Rica. Inter-American Highway: Costa Rica, Guatemala, Nicaragua, and Panama.

COVER

I-480 exit ramp, Omaha, Nebr., the first trapezoidal unsymmetrical steel box girder bridge completed in the United States. (Photo courtesy of Nebraska State Highway Department.)

Public Roads. A Journal of highway Research, is sold by the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402, at $\$ 2.00$ per year (50 cents additional for foreign mailing), or 40 cents per single copy. Subscriptions are available for 1-, 2-, or 3-year periods. Free distribution is limited to public officials actually engaged in planning or constructing highways and to instructors of highway engineering. There are no vacancies in the free list at present.
Use of funds for printing this publication has been approved by the Office of Management and Budget, March 23, 1971.

Test vehicle used in research.

Improvement of Visibility for Night Driving

BY THE
OFFICE OF RESEARCH

Reported by ${ }^{1}$ RICHARD N. SCHWAB, Electrical Engineer, Federal Highway Administration; and ROGER H. HEMION, Manager,

Transportation Research Section,
Southwest Research Institute

Introduction

FOR many years the Federal Highway Administration has been studying ways to improve visibility for night driving (1 , 2, 3, 4, and 5). ${ }^{2}$ Two methods-fixed source lighting and automotive headlamps-are currently used for roadway illumination. Fixed source illumination systems are comparatively expensive; therefore, they are usually considered applicable to only the higher volume, urban areas. At the present time only a small fraction of the total surfaced road and street mileage has some form of fixed illumination.

Although urban driving accounts for approximately half of all travel and is still increasing, the absolute magnitude of travel on the other parts of the highway network

[^0]is also increasing. One estimate suggests that the amount of travel on the 2-lane rural highway system in the United States will increase about 50 percent within the next 20 years (6). Obviously, headlamps must still be relied on for night driving.
The purpose of this article is to summarize 15 recent research and development studies having two broad objectives: (1) to show the effects of glare and its consequent restriction of visibility during darkness upon traffic dynamics, especially on 2-lane rural highways;
and (2) to recommend a system of vehicular illumination which could provide an improved visual environment for night driving.

The remainder of this article will first detail the nature of the night visibility problem and then describe a series of studies designed to meet the objectives first stated. As a result of these studies, it appears that a polarized headlighting system might be a promising solution. Therefore, past objections to the polarized system are outlined and means for overcoming them suggested.

Nature of the Problem

Headlight design is currently based on a compromise between the need for adequate road illumination and the need to avoid dazling the eyes of oncoming drivers with glare light. During the past half century a number of modifications have been made in the control of headlamp beam configuration. These changes in intensity, beam pattern, and aiming have improved the visual environment for night driving. Changes in beam configuration alone, however, cannot possibly provide adequate lighting to enable the driver to operate his vehicle safely under many driving situations. This is especially true on 2-lane highways where there is an extremely small angular separation between approaching vehicles and your own lane. This condition and the variation in possible roadway geometry make it necessary to radically limit the luminous output in the upper left quadrant of the headlamp so that glare does not impair the visibility of oncoming motorists. But some luminance must be aimed in this direction so drivers can see to the left and can negotiate lefthand curves. Also, the designer is limited by physical considerations, such as filament size, in determining how sharp this cutoff can be. Improving visibility by changing beam configuration is therefore extremely difficult.

Reducing headlight glare improves night visibility, and this can be expected to help
reduce accident frequency. Although this is perhaps the major benefit, many other aspects of nighttime driving, interrelated to accidents, should benefit from better road visibility. Increased time for driver decision making, a result of increased distances at which road obstacles can be detected, is one example. Additionally, it should be possible to safely maintain somewhat higher driving speeds. This would allow for increased traffic flow and greater use of highways during off-peak nighttime hours. Although an improved headlighting system might produce an increase in night speed, this appears unlikely considering the small and directionally variable shifts in speeds encountered after installing fixed illumination systems. Eliminating glare would reduce stress, reduce the sensation of tunnel driving with its pressures for more exact control of lateral position, and improve the night driving capability of older drivers whose glare adaption responses have deteriorated.

Beam Usage Study

To provide background giving the extent of the problem and to provide data for benefitcost analyses, a nationwide survey of headlight beam usage practices was conducted (7) at the 17 test sites in 15 States shown in figure 1. Each site was 1,200 feet long and located in most instances on rural, 2-lane unlighted
highways of moderate traffic volumes. Three sites, however, differed. Site 15 was a 4 -lane freeway with a median 50 feet wide, site 16 was a 2-lane high volume rural road carrying a large proportion of recreational traffic, and site 17 was a suburban, 2 -lane road with over-head lighting. One of the rural, 2-lane sites (site 7) was observed under two climate conditions: snowy winter and clear spring weather.
Observers at each end of the test site recorded the type of vehicle and headlight configuration on an event recorder chart with the vehicle position information. The instrumentation package automatically recorded time/position of the passage of individual vehicles in normal traffic on the same recorder chart.
The observations showed that during normal nighttime clear weather conditions over 75 percent of the drivers were using their headlights improperly; that is, using low beams when high beams should have been used because they were neither meeting another vehicle nor following closely behind one.
To obtain sufficient data within a reasonable study time only sites having an average daily traffic volume of 3,000 to 5,000 vehicles were selected. This resulted in minimum nighttime volumes of approximately 20 vehicles per hour. Consequently, observed beam usage patterns must be projected to

Figure 1.-Site locations for public-beam-usage studies.

Figure 2.-High-beam usage related to traffic volume.

Figure 3.-Headlight disability veiling brightness on 2-, 3-, and 4-lane highways.
apply to lower volume roads not studied and prorated among all roads in order to estimate the beam usage pattern on all rural highways.

High beam usage

Theoretically, the average driver is not conscious of traffic volume as such but is aware of the time intervals between meetings with opposing vehicles. When this time interval is consistently too short, the driver will not switch back to high beam between meetings and will drive continuously on low beam. To evaluate this theory and determine the effect of traffic volume on beam usage when no other vehicle was in sight, traffic volumes were recorded for each 15 -minute interval of the study. The intervals were classified by volume in increments of 10 vehicles per hour and the percentage of high beam usage plotted (fig. 2). As can be seen, 50 percent high beam usage did not develop until the traffic volume had dropped to less than 30 vehicles per hour; that is the driver sees an opposing vehicle at greater than 2-minute intervals.

If a driver in traffic meets 30 vehicles per hour, the traffic volume counted at a fixed position along the roadway will be 15 vehicles per hour in one direction, provided that all traffic is uniformly distributed and moving at the same average speed. If traffic volumes in each direction are equal, the two-way traffic volume will be 30 vehicles per hour or the same volume as met by the moving observer. Thus if the above assumptions are met, the traffic volume in figure 2 may be interpreted in two ways: (1) The number of opposing vehicles that a moving driver meets, or (2) the two-way traffic volume counted at a fixed station.
The confidence bands bounding the regression line (fig. 2) indicate a wide variation in beam usage from one observation to another at any specific traffic volume. However, figure 2 does provide a reasonable method for making a projection because the mean values for all observations at any given volume grouping fall closely about the regression line. For benefit-cost and similar purposes, the mean value is of principal interest rather than beam usage for any individual observation. The fraction of high beam usage for each volume grouping was multiplied by the fraction of nighttime travel occuring in that volume category. The result was a corrected estimate that approximately 39 percent of all unopposed driving at night in rural areas is done on high beams and the remaining 61 percent on low beams.

Visibility Studies

Because the greater share of rural night driving is done on low beams, it is important to determine the effect of both low and high beam headlamps on the ability of drivers to detect typical highway visual targets. A simulated roadway was established on a 5,000foot asphalt runway of an inactive airfield (8). Two vehicles were instrumented to provide a continuous record of their position both longitudinally and laterally on the simulated road. The instruments also provided data on target detection by the driver and glare intensity faced by the driver. From the
position data, the distance between opposing vehicles could be determined together with the distance of the driver from a target at the point when he detected the target.
Variation of disability veiling brightness (DVB) with longitudinal distance between opposing vehicles with conventional headlights on 2-, 3 -, and 4 -lane roads is shown in the upper curves of figure 3. DVB is a photometric measure of the glare effect produced by all the luminances in the field of view. DVB is an expression of the equivalent veiling or uniform luminance which could be superimposed over some visual target to produce the same loss of visibility as that resulting from all the glare sour ees in the field. Two characteristic effects of increased lateral separation will be ncted in figure 3 by comparing the dashed curves for 4 lamp, high beam on 2-, 3-, and 4 -lane highways. First is the reduction in intensity resulting from lateral displacement of the observer from the center hot spot of the beam. Second is the movement of peak intensity to greater lcngitudinal distances between opposing vehicles.

Polarized headlighting system

Several alternative methods have been suggested for reducing headlight glare. Many of the systems involve some type of screening or planting between vehicles moving in opposing directions. But these systems are limited to divided highways and cannot be employed on the very roads where they are critically needed-2-lane rural highways. Another possibility is to use controlled headlamp beam distributions that optically project the beam straight ahead of the vehicle without impinging on the opposing lane. Unfortunately, highways are not always straight and unless expensive feedback control systems are employed, it is impossible to keep from blinding opposing drivers at some point in a curving highway situation. Of course, as was suggested earlier, a continuous fixed source illumination system could be used, but this alternative is expensive.

One of the most promising systems involves linear polarizers combined with high wattage light sources (9, 10, 11, and 12). Such a method could theoretically provide an illumination system with greatly increased road visibility without causing direct glare to oncoming motorists. This is indicated in figure 3 by the much lower level of disability veiling brightness for the polarized systems.

The polarized system (fig. 4) relies on the principle that two linear polarizers with their planes of polarization perpendicular to each other permit only a negligible amount of light flux to pass the second polarizer. Polarizers are attached to the headlamps having their transmission axes oriented at 45 degrees with the vertical. Another polarizer, called the analyzer, with the same transmission axesparallel to those over the headlamps-is installed in front of the driver's eyes in a position similar to that of the sunvisor but intersecting the line of sight toward the opposing vehicle. This analyzer is constructed so that it can be moved out of the way when not
needed. Because the transmission axes of the headlamp polarizer and the analyzer are parallel, light from the driver's headlamps, reflected from pedestrians, signs, pavement markings, and other parts of the roadside environment, is transmitted through the analyzer to the driver's eye. However, when another vehicle equipped in the same manner approaches, the transmission axes of the polarizers over its headlamps is perpendicular to that of the original vehicle's analyzer. Thus only negligible light is transmitted and neither driver is blinded by glare from the approaching headlamps.

The main portion of the visibility studies involved determining the distance ahead at which each of three targets first became visible. Four specific headlighting systems were used in this phase of the study. The studies included situations with no opposing vehicle (no other vehicle in sight), and meetings of one opposing vehicle that employed the same headlighting system. In preliminary investigations, with both one and three opposing vehicles, it was determined that the increase in intensity and duration of glare caused by multiple opposing vehicles reduced detection distances. However, the number of cars in the platoon caused no differential effects among targets. So the main experiment, employing 20 randomly selected drivers, studied only the no opposing and one opposing vehicle situations.
Because they were typical of the range of driver detection tasks at night, the following three targets were selected for this study:
Sign target.-A 96-percent diffuse reflective white $21 / 4$-foot square with one quarter missing
was seen against a 9-percent diffuse reflective black panel. The bottom of the panel was 60 inches above the ground and the left edge of the sign 6 feet from the edge line of the driving lane. The panel could be rotated and the missing portion of the square used as a target identification task.

Pedestrian target.-A three-dimensional 6 foot tall manikin, its exposed features painted with 17 -percent diffuse, reflective grey paint and wearing a 17 -percent reflective grey topcoat, was positioned with its right arm 2 feet from the edge line of the driving lane.

Line target.-A portable, reflectorized yellow, 4 -inch wide, no passing line 100 feet long was positioned in the normal location along the right side of the centerline. The targets are illustrated on the right side of figure 5 .

Results of these studies are summarized in figure 5 . The left curves indicate little difference in detection distance between conventional high-beam and low-beam headlighting with an opposing glare car that employed the same headlighting mode, except for the sign target. When high beam was opposed by high beam, detection distances for the sign were approximately 125 feet further away than when low beam was opposed by low beam. As expected when no opposing vehicle was present, detection distances were greater with high beam compared to low beam regardless of the target used. When unopposed, low beam detection distances were as good if not better than the meeting situation with high beam. However, the visibility with either high or low beams was generally unsatisfactory and severely limited the time available for taking evasive action. A system allowing visibility equivalent

Figure 4.-Polarized headlighting system.

Figure 5.-Distribution of detection distances for all drivers and headlight configurations.
to that of unopposed high beam during the meeting situation was clearly needed.

Increased detection distances
 with polarized system

When polarization radically reduced glare, the difference in detestion distances between opposed and unopposed driving modes was greatly reduced (fig. 5). Using polarization in the opposed mode increased detection distances over those obtained in the unpolarized mode, regardless of target or intensity of the lamp used with the polarization. In the unopposed mode, increased detection distance occurs even if the analyzer is not used. It should not be used when there are no opposing headlights, and if the polarized illumination is equal to or greater than the unpolarized standard headlamps (criteria used in the design of the High Intensity Polarized [HIP] system), then visibility without the analyzer and with no opposing vehicle would be equivalent to that of high beam
for most target types. However, for the unopposed mode, detection distances (fig. 5) for the polarized headlight cases included the analyzer because randomly presenting test factors to the subjects precluded the omission of the analyzer for unopposed trials. Also, this constitutes the worst case which can re-
sult if the driver becomes lazy and fails to move the analyzer from his line oif sight when no opposing vehicles are present.

Substantially higher safe driving speed

How does a polarized system affect the safety of the average motorist? By using the data on visibility of a pedestrian target at the road edge for each headlight system (fig. 5), it is possible to calculate (18) a safe speed from which the normal (median) driver would be able to stop before striking the pedestrian. The results of this calculation are given in table 1.

The average speed of over 50,000 vehicles observed during the beam usage study was $60.5 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on dry pavements and $55.4 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on wet pavements. Thus the great majority of the drivers of these vehicles, approaching 98 percent under some road conditions, exceeded a speed from which they could safely stop if a pedestrian stepped out onto the road. Pedestrians account for approximately 10 percent of the fatalities on rural highways. In the absence of an opposing glare car, there is a minor reduction in the safe speed in going from high beam to high intensity polarized headlights with analyzer. However, this reduction can be compensated for by not using the analyzer when there is no opposing vehicle. The major effect is observed in the case of opposing traffic where the elimination of glare (disability veiling) inherent in the polarized system results in a marked increase in safe speed levels.

The foregoing discussion is based on using high intensity polarized lamps. Using existing high beam lamps with polarizers results in safe speed levels about halfway between that of conventional headlamps and the high intensity lamps when an opposing vehicle is present. Without an opposing vehicle, the safe speed would be less than conventional high beam but well above that of low beam. Overall, using existing high-beam lamps with polarizers (no increase in lamp power) improves the night driving environment over that of conventional headlamps in all cases, except for unopposed driving where highbeam lamps are now used- 39 percent of the unopposed driving. However, the improvement would not be sufficient to raise the safe speed for meeting situations to the level required to see and stop for a pedestrian at current highway speeds.

Table 1.-Safe speed for stopping before striking a pedestrian when first detected

Opposing vehicle	Pavement	Conventional headlamps		High intensity polarized headlamps	
		Low beam	High beam	With analyzer	Without analyzer
		(m.p.h.)	(m.p.h.)	(m.p.h.)	(m.p.h.)
Yes	Dry		40	63	${ }^{(2)}$
Yes	Wet.	35 50	35 80	50 173	(2) 80
No.	Wet.	40	80 65	158 +158	68

[^1] beam.

Dirty windshields and polarizer misalinements

Detection capability for drivers using polarized lights is reduced by a dirty windshield not only because of reduced light transmission but also because the dirt particles are illuminated by the opposing headlights and interpose a more or less bright screen which effectively reduces the contrast between the target and its background. No appreciable depolarization was noted from the dirty windshield (8). Table 2 shows that the visibility loss with a dirty windshield, employing the high intensity polarized lamps, was about 6 percent compared to 10 percent with conventional headlights. This result does not imply that driving with a dirty windshield should be ignored. This study only involved the effect of the dirt on detection capability, and the problems related to the distraction and confusion caused by dirt on the windshield were not considered.

Some misalinement of the polarizers between the two approaching vehicles is bound to exist because of road crown, superelevated curves, and other causes of vehicular roll movement, including rough pavements and pot holes. Because of the nature of polarization, misalinement increases the light transmission. Dynamic studies of vehicular roll have shown that a practical maximum of 7 degrees oceurs in moving vehicles on normal paved highways. Figure 6 shows that a misalinement of more than twice this value, or 15 degrees, has an insignificant effect on the driver's detection capabilities (14). It is therefore concluded that superelevated curves and other causes of vehicular roll will not adversely affect a polarized headlighting system.

Comfort

The discomfort caused by glaring headlights is essentially subjective and not necessarily accompanied by a corresponding visual disability. Visual discomfort was rated on a 6 -point scale by asking the subjects, at the completion of each test, for a judgment of comparative discomfort caused by opposing headlamps when meeting another vehicle head-on (8). Figure 7 indicates that there was a definite correlation between subjective ratings of glare and measured disability glare levels. Both polarized systems produced only about one-third the discomfort (2 points less) than high beam and about half (1 point less) than low beam.

Table 2.-Detection distances as affected by dirt on windshield

Windshield	High beam	High intensity polarized
	Feet	Feet
Clean_............	590	660
Dirty.........	530	620

Figure 6.-Mean target detection distances as affected by vehicular roll.

Figure 7.-Relative discomfort from opposing headlight modes.

Fatigue Studies

A reduction in driving tension and physiological and psychological irritation of meeting headlights of approaching traffic was subjectively apparent to all subjects. It was postulated that driving a vehicle for extended periods, when all opposing traffic was controlled with regard to headlight modes, would induce fatigue at differential rates, depending on the stressful characteristics of the specific lighting modes. It was further expected, from previous research (15), that sufficiently sensitive indicators of such fatigue propagation were available to discriminate among the comparative fatigue or stress inducing potentials of the various headlighting modes.

Initially, the course used for the visibility studies was extended by utilizing an adjacent
parallel runway and an intersecting runway and taxiway to provide a loop course approximately $13 / 4$ miles long. Real and simulated vehicles were used to provide opposing traffic (headlights) for the subject drivers. Fatigue development in the observers was evaluated in terms of their performance of several physiological and psycho-physiological tasks presented at the beginning and end of each test session or periodically during the session.

Simulated driving as well as road simulation was employed in the second part of the fatigue study. For the most part laboratory instrumentation was used to evaluate subject psychophysiological, physiological and vigilance responses. The subject, in the driving seat of a stationary automobile, was given a tracking task in the form of a meter nulling response to random input steering offset error

Figure 8.-Effect of lighting conditions on reaction time.

Figure 9.-Subjective fatigue mean score, before and after simulating driving at each lighting condition.
signals. Random visual flicker and andio flutter presentations required the driver to lift his right foot off the accelerator and then apply the brake. These tasks were conducted during repeated exposures of the headlight modes being studied, and each driver's performance was measured.

These experiments, in both the real and simulated driving phases, neither supported nor refuted the hypothesis that fatigue affected driver performance differently with respect to the lighting system involved. Although some of the measures and techniques selected to indicate stress or fatigue development showed changes during the tests, in general these changes were not consistent between driwers nor within a single driver's performance on successive replications (15). Brake reaction time in response to an unanticipated signal, however, did show some consistener. Figure 8 shows that no appreciable changes in performance occurred for the first 2 hours of the simulated driving session. In the third hour, differences were apparently related not so much to glare but perhaps to discomfort and stimulation. The polarized system apparently developed an optimum stimulus to alert the driver between the overloading effect of the glaring high-beam lights and the soporific effect of no opposing traffic.

Using a scaling technique, subjective discrimination of fatigue development related to lighting modes was achieved (fig. 9). The greatest increase in fatigue was obtained in the absence of glare and the least with the polarized system, although the differences were not statistically significant. Thus only an indication of correlation with performance data was obtained.

Driver Behavior

The effect on the lateral positioning of the subject's vehicle in its lane when approaching the target and the meeting point with the opposing glare car(s) was also investigated. A consistent tendency to steer toward the oncoming glare car and a distinct reduction in steering deviation was observed with most drivers at an intercar separation distance of about 800 feet (5 seconds from meeting point). This can be attributed to an anticipatory steadying or tightening of the steering control before the approaching encounter, and a sort of staking out of one's territory. Prior to this point, the approaching vehicle does not present a hazard; that is, sufficient time is available to maneuver in the event something unexpected occurs. However, the presence of the opposing vehicle forces the driver to recognize that he is approaching a potentially hazardous situation; therefore, he makes corrections to his vehicle's path by steering the vehicle away from the oncoming vehicle to obtain greater lateral separation.

It was hypothesized that the greater stress of opposing high-beam lights causes proportionately greater lateral displacement than reduced glare from low-beam or polarized headlights. Some difference was noted with headlight modes in opposed trials (fig. 10). The opposing vehicle itself appeared to be
the principal motivating influence, irespective of its lighting, that cansed the driver to move to the right as the vehicles approached their mecting point. Only in the mopposed trials did the target appear to exert any influence, but with essentially no distinction between the targets.

Judgments of speed, distance, angular relationship, and the cclative position of potentially hazardons sitnations are important to drivers. The ability to make these judgments may be influenced directly by the lighting system used. When it is safe to leave a side road and pooceed actosis a highway is a particularly critical judgement. Studies were made of right angle gap acceptance behavior, using both conventional headlamps and the polarized system (16). A recent reanalysis of the study results is shown in figure 11 and in table 3.

Table 3.-Effect of headlighting system on gap acceptance

Headlighting systems, which in the right angle situation produced the most glare, lequired somewhat longer gaps for crossing. Low-beam and polarized beam with glasses were the low glare situations requiring somewhat shorter gaps for crossing. Polarized beam with visor and high beam were high glare situations and required a larger gap. The variance in the minimum gap sizes accepted appeared to be about the same in all cases. That the polarized system, using a fixed visor mounted in place of the sunvisor, should be characterized as high glare is reasonable in the right angle situation because the driver is not protected against vehicles approaching from the side. An analyzer in the form of glasses did provide protection to the side. However, becanse the head tips somewhat as it is turned to the side, the protection is not complete and the end result is quite similar to that of low beam.

High glare appears to make drivers behave more conservatively, by judging the brighter sources to be somewhat closer than they are and thereby allowing a somewhat greater margin of safety. This, of course, could have an adverse effect on traffic flow, particularly when a high volume exists on the main road. Fortunately nighttime traffic is seldom near capacity on most unlighted roads where the glare problem is acute. The gap acceptance studies clearly show that if the polarized headlighting system is introduced, care should be taken in the design of the analyzer to protect drivers during encounters with vehicles fiom the side.

The design of the analyzer may be particularly important for older drivers because the glare tolerance of individuals is increasinglyreduced with age.

Fixed Lighting

The detection distance results f1om lowbeam headlighting alone (1\%) are compared with that obtained with the addition of fixed, overhead lighting in figure 12. The major effect of fixed lighting was confined largely to the two rertical targets. The reflectorized no passing line was relatively unaffected by the additional illumination because the brightness of the line was largely controlled by the illumination coming from the headlamps. Becaluse of the geometric relationship of line and driver, additional illumination from the fixed lighting sources did not increase the contrast between the line and pavement. In the case of the two
vertical targets-the nom eflectorized sign and pedestrian-adding fixed lighting to low-bean head lighting more than doubled the detection distance. This appears to be primarily becaus. of illumination falling directly on the two vertical targets (this will be discussed later)

Apparently little difference exists in thi offectiveness of the two illumination level used- 0.6 and 2.0 footcandles average hori zontal illumination (fig. 12). The detection distance was also largely independent of the trpe of vehicular lighting used (table 4) Glare from an opposing vehicle's headlamp: caused a reduction in detection distances particularly when high beams were employed with or without a fixed lighting system.

Figure 10.-Maximum lateral deviation as affected by headlamp-beam type.

Figure 11.-Distribution of gap acceptance for each lighting mode.

Figure 12.-Detection distance on dry pavement, low-beam headlights and different fixed-lighting levels.

Figure 13.-Effect of target position on detection under fixed overhead lighting.

A much greater effect was observed when the target was forelighted or backlighted by overhead luminaires. Figure 13 shows that front lighting inereased detection distance for the two vertical targets (the line target being unaffected by fixed lighting is not shown). The increase varied between 30 and 140 percent with an overall average of 80 percent. The differences were somewhat greater with the two-dimensional sign target than the threcdimensional pedestrian, where the possibility of edge lighting was present. The location of the luminaire is important and should be considered by highway lighting designers when locating Iuminaires with respect to pedestrian crosswalks. In many instances, the two-way nature of traffic and other considerations make front lighting impossible. However, on one-way streets and/or at mid-block pedestrian crossings, front lighting may be feasible.

Luminaire location had the least effect when the driver used parking lamps. This is reasonable because the target in rear lighting is seen by silhouette, and any illumination reaching the target from the vehicular lighting system only reduces the contrast. This indicates that with adequate overhead lighting levels, motorists may operate safely with only marker lights (perhaps of somewhat large size and intensity) on their vehicles. This would reduce glare to a minimum. However, further investigation lelating to the ability of pedestrians and drivers in detecting vehicles employing only marker lamps is needed. Some research in this area is currently under way at Franklin Institute Research Laboratories in Philadelphia.

Eliminating glare by polarization, expanding overhead fixed lighting, or by any other practicable means would greatly improve the ability of drivers to see roadside obstacles, traffic markers, signs, and other objects in the highway scene. The best way to improve visibility appears to be adequate levels of fixed, overhead lighting.

In 1967 there were 1.1 million miles of unlighted, paved, rural highways. The estimated cost for installing and operating fixed lighting at a 2 -footcandle average level for the paved road network for a 20 -year replacement cycle

Table 4.-Effect of various fixed and vehicular lighting system combinations on mean detection distance

Fixed lighting	None				0.6 ft .-c.				$2.0 \mathrm{ft} . \mathrm{cc}$.			
Vehicular lighting	Parking	Low beam	High beam	HIP	Parking	Low beam	High beam	HIP	Parking	Low beam	High beam	HIP
Unopposed: Sign_-.......		Feet 420	$\begin{gathered} \text { Feet } \\ 865 \end{gathered}$	$\begin{gathered} \text { Feet } \\ 800 \end{gathered}$	$\begin{aligned} & \text { Feet } \\ & 1,467 \end{aligned}$	$\begin{aligned} & \text { Feet } \\ & 1,360 \end{aligned}$	$\begin{aligned} & \text { Feet } \\ & 1,710 \end{aligned}$	$\begin{aligned} & \text { Feet } \\ & 1,367 \end{aligned}$	Feet 2,012	Feet	Feet 1,960	Feet 1,783
Pedestrian		375	780	$5!10$	1,317	1,789	1,564	1,785	1,662	1,76?	1, 722	1,919
Line-:		215	360	380	177	175	249	290	336	411	58.	497
Sign...		345	490	630	1,417	1,330	1,191	1,122	1,536	1,260	1,005	1,377
Pedestrian		245	245	460	1,743	1,206	860	1,354	1,618	1,353	845	1,205
Line---.--		130	135	260	158	197	153	238	340	267	184	424
Wet pavement:												
Unopposed:			1680	1653					2, 221	1,886	2, 220	
Pedestrian									2,248	1,645	2,008	1,280
Line									178	209	236	128
Opposed:				${ }^{1} 563$						1,387	1, 160	
Pedestrian									1,722	1,560	991	1,245
Line-.-....									182	160)	102	172

${ }^{1}$ Partial series only.
is $\$ 97$ billion (18). The total cost for fixed lighting would, therefore, approximate the total cost of the Interstate Highway Srstem.

It is clear that this solution is not economically feasible for the entire highway system, although it is justifiable on certain highwars. Fixed lighting appears to be warranted where the driver is faced with unpredictable situations in which the added visibility from fixed lighting is of considerable aid. Some factors which may koad to this lack of predictability are heavy concentrations of pedestrians, unusual geometry, and high traffic volumes.

Normal headlighting on umlighted, rural roads still causes glare, and such roads constitute nearly all of the Nation's highway system and carry the largest portion of the traffie. A comsiderable increase in overhead, fixed highway lighting will not eliminate the need for modification of vehicle headlighting if the objective is improved illumination for operation on the highway at night. Increased headlamp intensity to provide greater visibility while eliminating glare from opposing headlamps remains essential for the bulk of highway uperations. The polarized headlighting system, therefore, is essential. It provides substantial improvement in visibility, coupled
with a radical reduction in glare on all roads, instead of the partial solution provided by fixed lighting employed only on certain roads.

Objections to a Polarized System

Evolutionary changes in the motor vehicle have made objections to the polarized headlighting system invalid. Laminated glass for windshields is an advancement that eliminates distortions caused by tempered glass. Another improvement is the higher capacity of modern electrical systems, a condition which makes higher powered lamps feasible. Some existing limitations must still be studied and overcome. Chief among these are the reduction of heat generated in the polarizers from the lamp and the transition to a polarized system from the present conventional lamps.

Heat problems

Commercially available polarizing materials (and agents used for bonding them to the lamp) can withstand approximately 150 degrees C. without detrimental effects which reduce light transmission. The maximum power consumption for filaments that fit a standard $53 / 4$-inch lamp is about 125 watts.

To obtain this limit, a dichroic reflector must be employed to dissipate the heat. Such reflectors are comparatively expensive. The lamp intensities required to obtain the increased detection distances shown in figure 5 could be provided by four $50-$ to 75 -watt lamps. Standard aluminum on glass reflectors could be used on such a lamp. The major problem of heat dissipation, therefore, would not arise unless longer detection distances than those shown in figure 5 were required for very high-speed operation. Because of the constraints imposed by vehicle power generation systems, it is not likely that heat dissipation will be a problem for any retro-fit system. On new vehicles, if the heat problem can be solved, increased detection distances from very high-intensity lamps might be considered.

Transition to the polarized system

Converting to a polarized system is difficult and requires considerable analysis of alternative methods. With more than 100 million vehicles on the road, it is important to develop smooth, expeditious plans for a transition. It is obviously not possible to equip all vehicles on the road overnight. Therefore,

1

```
HB - HIGH BEAM
LB - LOW BEAM
HIP-HIGH INTENSITY, POLARIZED
+A - POLARIZATION ANALYZER IN USE
```

Figure 14.-Mean target detection distances during transition period.
during the transition period, both polarized and unpolarized headlights will be present in traffic. A series of studies was made to determine what effect on visibility such mixed meetings would have (19).

Figure 14 shows that in only two instances would visibility conditions in a meeting between a modified and unmodified vehicle be significantly worse than those presently encountered with low beams- 93 percent of all meetings occur with low beam. In both situations, the driver with polarized equipment would be able to quickly recognize that because he is seeing white lights-the sign of conventional unpolarized lamps-he is at a disadvantage. He could then simply move the analyzer out of his viewing field and revert to a conventional meeting situation with the same visibility; that is, no worse than the present low beam to low beam meeting.

Several conversion schemes for the transition are possible, and only by additional research and field testing will it be possible to develop the necessary information for wisely choosing among them. A scheme which is feasible, but may not be the optimum solution, is as follows:

- During the first 3 years of the conversion, all new vehicles would be equipped with a polarized headlighting system. The conventional system would continue to be used for all meetings between vehicles which are not equipped; but where both vehicles are equipped, the polarized system can be used. Therefore, if one vehicle in a meeting did not have the polarized system, the driver would flash his lights and the meeting would occur on low beam as at present. Unopposed driving would be either with high intensity polarized beams for new vehicles or high beam for used vehicles.
- At the end of the third year, all drivers would be required to install analyzers in their vehicles. Used vehicles would be required to be equipped with the full system including the polarized lamps on title change. All new vehicles would continue to be equipped. Vehicles equipped with the polarized system would use it for meeting situations. All other vehicles would use low beam plus their analyzer.
- At the end of the sixth year, conversion of all remaining vehicles would be required.
This means that for the program's first 3 years, owners of new vehicles would have the system and obtain some limited benefit when meeting another new vehicle. By the end of the third year, approximately one-third of all vehicles would be equipped (20). Because newer vehicles tend to be used more than older vehicles, equipped vehicles would account for perhaps 45 percent of all oncoming traffic. Fitting all vehicles with the analyzer at the end of the third year would increase the benefit to those with fully equipped vehicles and speed the voluntary conversions. By requiring retrofitting of used vehicles on resale for the next 3 years, conversion of the remaining vehicles is speeded up, and by the end of the sixth year more than three-quarters of all vehicles would be fully equipped. These vehicles will account for 85 to 90 percent of all meetings.

Equipment for new vehicles would cost the owner approximately $\$ 30$ (19). To retro-fit used vehicles would cost between $\$ 26$ and $\$ 4.5$ per vehicle, depending on the type of headlighting system presently on the vehicle. Modification of existing vehicles is possible in most cases by any driver who is capable of making simple repairs.

Because of their low electrical power capacity, a few vehicles probably could not be converted at these costs. Such vehicles could be equipped with an analyzer only and allowed to operate on low beam. Visibility would be approximately the same (fig. 14).

Conclusions

The research described here has demonstrated that: Polarization appears to be the only practicable method by which adequate vehicle headlighting can be provided without causing disturbing levels of glare to motorists coming in the opposite direction. It is technically and economically feasible, and is advantageous in terms of impıoved visibility. The result will improve vehicular control, safety, and comfort, and probably traffic flow and use of highways at night.

Recommendations

Although it appears that polarization of headlights provides the most practicable approach to achieving adequate visibility at night, many aspects of the conversion and use of polarized headlamps require further consideration and evaluation. A public test and evaluation program should be undertaken to examine problems and develop precise data on the costs and benefits of such a system. The data would evaluate public response to the system through interviews and operational studies of traffic flow and accident characteristics. Also, problems of equipment operation and maintainability would be studied. To obtain reliable measurements, the test should be conducted in isolation from traffic equipped with conventional headlights, for a sufficient period of time. A test is currently being planned on an island, with access from the mainland limited to car ferry, oceangoing shipping, and air transport (21).

REFERENCES

(1) Effects of Highway Lighting on Driving Behavior, by W. P. Walker, Highway Research Board Proceedings, vol. 20, 1940, pp. 511-521.
(2) Studies of Motor Vehicle Operation on Lighted and Unlighted Rural Highways in New Jersey, by O. K. Normann, Highway Research Board Proceedings, vol. 24, 1944, pp. 513-534.
(3) Traffic Operations as Related to Highway Illumination and Delineation, by A. Taragin and Burton M. Rudy, HRB Bulletin No. 2555, 1960, pp. 1-29.
(4) Headlight Glare and Median WidthThree Exploratory Studies, by Lawrence D. Powers and David Solomon, PUBLIC ROADS, vol. 33, No. 7, 1965, pp. 125-142.
(5) Night Visibility for Opposing Drivers with High and Low Headlight Beams, by

Richard N. Schwab, Illuminating Enginecring, vol. 60, No. 5, 196.5, pp. 364-372.
(6) Identification and Evaluation of Remedial Aid Systems for Passing Mancuvers on TwoLane Rural Roads, by Arno Cassel and Michael S. Janoff, The Franklin Institute Research Laboratories, Technical Report 1-201, February 1970, PB 185:507.
(7) Headlamp Beam Usage on U.S. Highways, Phase III, by Charles T. Hare and and Roger H. Hemion, Southwest Research Institute, Report No. AR-666, December 1968; PB 190154.
(8) The Effect of Headlight Glare on Vehicle Control and Detection of Highway Vision Targets, Phase I, by Roger II. IIemion, Southwest Research Institute, Report No. AR-640, May 1968, PB 179441.
(9) The Polarized Headlighting System, by Edwin H. Land, J. H. IIunt, and Tal J. Roper, HRB Bulletin No. 11, 1948.
(10) A New System with Polarized Headlights, by Gunnar Johansson and Kare Rumar, Department of Psychology, University of Uppsala, Sweden, Report No. 64, December 1968.
(11) An Investigation of Headlight Glare as Related to Lateral Separation of Vehicles, by L. A. Webster and F. R. Yeatman, University of Illinois, Engineering Experiment Station, Bulletin No. 496, 1968.
(12) Road Research Programme, Cooperative Research Programmes, by Research Group S2 on Lighting, Visibility and Accidents. Organization for Economic Cooperation and Derelopment, Document No. RR/S2/70.1, March 1971.
(13) A Policy for Geometric Design of Rural Highways, 1965, by AASIIO, 1967.
(14) Effect of Vehicular Roll on Polurized Headlighting, by Walter S. Adams, PCBLIC ROADS, vol. 36, No. 7, April 1971.
(15) Driver Fatigue in Night Operation, Phase II, by Samual G. Schiflett, David G. Cadena, and Roger H. Hemion, Southwest Research Institute, September 1969, PB 190154.
(16) Driver Judgments as Influenced by Vehicular Lighting at Intersections, by Nicholas G. Tsongos and Richard N. Schwab, PUBLIC ROADS, vol. 36, No. 1, April 1970.
(17) Disability Glare Effects from Vehicle Headlights and Fixed Overhead Street Lighting, Phase IVB, by David G. Cadena and Roger H. Hemion, Southwest Research Institute, Rcport No. AR-700, PB 18972.5.
(18) A Preliminary Cost-Benefit Study of Headlight Glare Recluction, Phase V, by Roger H. Hemion, Southwest Research Institute, Report No. AR-683, March 1969, PB 185137.
(19) Disability Glare Effects During a Transition to Polarized Vehicle Headlights, Phase IVA by Roger H. Hemion, Southwest Research Institute, Report No. AR-672, January 1969, PB 183003.
(20) Rear Lighting System Changeover Study, Volume II, by Systems Associates, Inc., May 1968, NHSB No. HS-800011.
(21) Preliminary Site Selection for Public Test of Polarized Headlighting, Phase TI, by Roger H. Hemion, Southwest Rescarch Institute, Report No. AR-692, PB 18.5872.

Travel by Motor Vehicles in 1970

BY THE OFFICE OF
HIGHWAY PLANNING

Reported by W. JOHNSON PAGE
 Highway Research Engineer Program Management Division

MOTOR vehicle travel in the United States in 1970 totaled 1,121 billion vehicle miles. This is equivalent to an average daily traffic (ADT) of 820 vehicles on each mile of the 3.7 million miles of roads and streets in the Na tion. To accumulate this total travel in 1970, s.) million passenger cars, 3 million motorcycles, 379 thousand buses, and 19 million trucks traveled an average of 10,076 miles and consumed 92 billion gallons of gasoline and diesel fuel at a rate of 830 gallons per vehicle. Total travel for 1971, based on information for the first 6 months of the year, is estimated at 1,170 billion vehicle-miles, a 4.4 percent increase over 1970.

National travel by motor-vehicle type and related data have been reported in this journal for many years. For 1969 these data appeared in PUBLIC ROADS, vol. 36, No. 6, February 1971.

Definitions

The term vehicle-miles and other technical terms used in this article are defined in the following statements

Vchicle-miles.-The term vehicle-miles refers to the amount of travel by one motor vehicle traveling 1 mile and includes travel on all highways and streets in the United States.

Trailer combinations.-A trailer combination is a truck or truck tractor pulling one or more trailers and/or a semitrailer.

Tehicles registered.-Vehicles registered refers to the total number of vehicles registered in a State in a calendar year or in a registration year if the registration year does not differ from the calendar year by more than 1 month.

Motor fuel consumption.-Motor fuel consumption is the total consumption of motor
fuel by highway vehicles for the year. The total amounts are obtained from State records and adjusted to remove fuel consumed for farm and other nonhighway uses.

Motor fuel consumption rate.-Motor fuel consumption rate is the average rate of motor fuel usage in miles per gallon (m.p.g.).

Annual miles per vehicle.-Annual miles per vehicle is an average figure obtained by dividing the total travel in annual vehiclemiles by the total number of vehicles registered.

Gallons per vehicle.-Gallons per vehicle is a figure obtained by dividing the fuel consumed by the vehicles registered.

Interstate System traveled-way.-The traveled-way of the Interstate System consists of completed sections plus those roads and strects now carrying traffic that will be served by the Interstate System when it is completed.

Travel

The travel and related data for 1970 are shown in table 1 by road system and vehicle type. Travel estimates by State and highway system, prepared by the State highway departments, are shown in table 2.

Ten States reported 1970 travel in excess of 30 billion annual vehicle-miles, accounting for almost 53 percent of all the travel in the Nation. California with more than 10 percent of the total led the way with 117.0 billion vehicle-miles. Following California, in order, were New York, 68.6 billion; Texas, 68.0 billion; Pennsylvania, 56.7 billion; Ohio, 56.0 billion; Illinois, 55.3 billion; Michigan, 53.1 billion; Florida, 41.8 billion; New Jersey, 39.9 billion; and Indiana, 32.6 billion.

Twenty States, including the 10 just listed, reported travel exceeding 20 billion annual
vehicle-miles. These States accounted for approximately three-fourths of the Nation's travel.

Main rural roads, comprising 17 percent of the Nation's total of 3.7 million miles of roads and streets, carried 36.8 percent of the 1970 travel. Urban streets accounted for 51.5 percent of the total travel, although they represented only 15 percent of the total mileage. Local rural roads accounted for 11.7 percent of the travel on approximately 68 percent of the mileage.

The Interstate System traveled-way accounted for about 1 percent of the tatal mileage of roads and streets and carried 18.7 percent of the travel.

The Federal-aid primary system, including Interstate, represented about 7 percent of the mileage and carried 48.5 percent of the travel. All Federal-aid systems combined, which includes 24 percent of the mileage, carried 66 percent of the travel.

Passenger cars represented 80 percent of the vehicles and accounted for over 79 percent of the travel; motorcycles, 2.5 percent of all vehicles and about 1 percent of all travel; and trucks and truck combinations, 17 percent of all vehicles and 19 percent of all travel. Similar figures for buses were less than one-half of 1 percent.

In the area of vehicle performance, annual miles per vehicle rose from 9,969 in 1969 to 10,076 in 1970, a sharp rise when compared to the trend. Gallons of fuel consumed per vehicle continued to rise-from 821 in 1969 to 830 in 1970. Miles traveled per gallon of fuel consumed, which began dropping in 1967 after several years of relative stability, dropped only slightly-from 12.15 in 1969 to 12.14 in 1970.

Table. 1.-Estimated motor-vehicle travel in the United States and related data-1970 ${ }^{1}$
[From table VM-1, Highway Statistics, 1970]

Vehicle type	Mortor-vehicle travel					Number of vehicles registered	Average travel per vehicle	Motor-fuel consumption		Average travel per gailon of fuel consumed
	$\begin{gathered} \text { Main rural } \\ \text { roads } \end{gathered}$	Local rural roads	$\underset{\text { roads }}{\text { All rural }}$	Urban streets	Total			Total	Average per vehicle	
Personal nassenger vehicles:	Million vehiclemiles	Thousand	Miles	Million gallons	Gallons	Miles gallon				
Passenger cars ${ }^{2}$ Motorcycles ${ }^{2}$					890, 844	89, 280	9, 978	65,649	735	13.57
All personal passenger veh	307,047	99,402	406,449	494,543	900, 992	92,095	9, 783	65, 784	714	13. 70
Commercial.	939	194	1,133	1,810	2,943	90.3		644		4. 57
School	784	902	1,686	1,814	2, 100	288.7	7,274	300	1,039	7. 00
All buses.........-	1,723	1,096	2,819	2, 224	5, 043	379.0	13,306	944	2,491	5.34
All passenger vehicles Cargo rehicles:	308, 770	100, 498	409, 268	496, 767	906, 035	92, 474	9,798	66,728	722	13.58
Single-unit trucks.	76,949	28,671	105, 620	68,823	174,443	17,788	9,807	17,237	969	10.12
Trailer combinations.	26, 874	1,570	28, 444	11, 783	40, 227	17960	41,903	8, 363	8,711	4.81
All trucks.-	103, 823	30, 241	134, 064	80,606	214, 670	18,748	11,450	25, 600	1,365	8.39
All motor vehicles	412,593	130,739	543, 332	577, 373	1, 120, 705	111, 222	10,076	92, 328	1,830	12. 14

[^2]${ }^{2}$ Separate estimates of passenger car and motorcycle travel are not available by highway category.

Digest of Recent Research and Development Results

Reported by the Implementation Division, Office of Development

The items reported here have been condensed from highway research and development reports, predominantly of Federally aided siudies. Not necessarily endorsed or approved by the Federal Highway Administration, the items have been selected both for their relevancy to highway problems and for their potencial for early effective application.

Each item is followed by source or reference information. Reports with an "NTIS" reference number are available in microfiche (microfilm) at 95 cents each or in paper facsimile at $\$ 3$ each from the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, Va. 22151.

HYDRAULIC FLOW RESISTANCE FACTORS

Design engineers concerned with hydraulic resistance of corrugated metal conduits commonly used as drainage structures will find useful information in a recently published report. It discusses the parameters influencing flow resistance of corrugated conduits, including relative roughness, Reynolds number, corrugation form, and method of manufacture. While the report does not cover the entire spectrum of culvert and storm drain design, it presents resistance factors and aids in tabular and graphic form for dealing with the geometry of various shapes and sizes of corrugated conduits. Of significance too is the evident magnitude of the errors inherent in applying a single resistance factor to corrugated pipes of all sizes, shapes, flow rates, and corrugation forms. The resistance factors are presented in terms of both Darcy f and Manning n values, permitting incorporation into most design procedures.

[^3]
EFFECTS OF PROPOSED HIGHWAY IMPROVEMENTS ON PROPERTY VALUES

Apparently, highway agency authority to acquire excess land would benefit both the State and the land owner in connection with right-of-way acquisition for proposed highway improvements. Moreover, advance acquisition would reduce the causes of enhancement or diminution in the right-of-way, and to a limited degree in areas contiguous to it. These views are among a number set forth in a recent NCHRP study of the effects of proposed highway improvements on property values. The author further states that revolutionary thinking and new concepts should be considered in right-of-way alinement and acquisition. He says that apparently statutory authority is generally (but not always) needed to eliminate the concept of use before highway agencies can proceed effectively under a revised concept of public purpose.

One of the objectives of the study was to develop and objectively set forth alternative valuation and legal methods, and to state the pros and cons of each. Appraisers, legal practitioners, right-of-way engineers and agents, and other public works officials will find this document of practical use. It presents in condensed form many ramifications of and suggested solutions related to a vexatious problem.

Effects of Proposed Highway Improvements on Property Values, Available from the Highway Research Board, National Academy of Sciences, 2101 Constitution Ave., NW., Washington, D.C. 20418. Price $\$ 2.60$.

HIGHWAY SOILS MAPPING BY AERIAL COLOR PHOTOGRAPHY

Aerial color photography is the best single type of remote sensing technique for extracting highway-oriented information on soils and terrain conditions, according to a recent evaluation. Color mosaics of surface areas of low relief (300 feet or less), properly annotated, make excellent master engineering soil plans that are more complete than black-and-white with respect to environmental conditions. In areas of high relief differences, some perspective distortions occur, but for most engineering site selection and design studies, the total view of the terrain and the soil environment shown on annotated color aerial photographs is more important than the geometric accuracy lost. The summary report discusses a number of remote sensing techniques and is rated an excellent reference source on types of soil information obtainable from the various sensing techniques, such as infrared, radar, photography, etc.

Remote Sensing and Development of Annotated Aerial Photographs as Master Soil Plans for Proposed Highways, Summary report, Indiana State Highway Commission, NTIS No. PB 199422.

NEW SPEED AND ACCURACY IN HIGHWAY DESIGN

Simplicity and greater speed and accuracy in highway engineering location and design are the benefits of a newly integrated single computer program for use in aerial triangulation. This new program combines and refines three earlier individual processes and offers such improvements as (1) minimizing of chance of errors from manual handling, (2) elimination of intermediate steps into and out of the computer, (3) reduced computer usage and easier detection of errors, and (4) convertibility to an integrated set of programs suitable for use on smaller systems. In addition, broader programs for roadway design are now nearing completion, into which the triangulation program can be integrated.

Electronic Computer Program for Analytical Strip Triangulation and Adjustment (Program No. R 0300), U.S. Department of Transportation, Federal Highway Administration, Office of Development, Implementation Division, Washington, D.c. 20590.

FREEWAY TRAFFIC MERGING CONTROL

Recent advancements in the development of freeway and ramp control systems have significantly contributed to freeway traffic control technology, and offer a rational approach to establishing control policy consistent with the demand-capacity philosophy. This approach can mean more efficient use of freeway sections operating near capacity. An investigation by the Texas Transportation Institute (TTI) documents the conduct and findings of research performed mainly on the Gulf Freeway in Houston. The work also covers development of various hardware and software aspects of freeway control systems using centralized digital computers, including system design requirements. Results can be directly applied to design and implementation of ramp and freeway control systems.

Gap Acceptance and Traffic Interaction in the Freeway Merging Process-Phase II, By the Texas Transportation Institute, NTIS No. PB 193901.

Highway Bridge Field Tests in the United States, 1948-70

BY THE OFFICE
OF RESEARCH

Reported by CONRAD P. HEINS, JR.,
Associate Professor, University of
Maryland, and CHARLES F. GALAMBOS,
Structural Research Engineer,
Federal Highway Administration

TTHE following tabulation of highway bridges provides a reference to bridge types and parameters on which loading performance data are available for the use of highway bridge design and research engineers. The tabulation was compiled from a survey conducted by Subcommittee No. 4, Static Field Tests, of Committee A2C05, Dynamics and Field Testing of Bridges, of the Highway Research Board.

The bridge descriptions are presented in alphabetical order, by State. The format is designed to permit a quick examination of the bridge characteristics, such as girder size and spacing, type and thickness of deck,
length of spans, and type and orientation of supports. The kind of test loading to which the bridge was subjected is also indicated. The numbers in the last column pertain to reports listed at the end of the tabulation. The best source of any published reports would be the various highway departments in which the bridges are located.

This report includes the data collected by Varney and Galambos, published in Highway Research Record No. 76, as well as an unpublished tabulation of bridge tests by W. W. Sanders. Their contribution, and that of those who replied to the survey, is gratefully acknowledged.

Definitions

 AC - Asphaltic concrete C_{L}-Centerlinecon. - Continuous
CP -Cover plates
ext. -Exterior
int. -Interior
LL -Live load
o.c. -On center

PC --Prestressed concrete
p.c.f.-Pounds per cubic foot

PMS-Plant mix surface
RC - Reinforced concrete
rdwy-Roadway
rpt. -Report

Test site and date	Bridge description								Reference
	Girders			Deck or slab	Spans	Supports	Remark:	Test loadings	
	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	Size	Spacing						
Alabama									
Auburn University, Auburn.	2	$\begin{aligned} & 2^{\prime} 9^{\prime \prime} \text { deep, } 4^{\prime} 71_{2}^{\prime \prime} \\ & \text { at haunch. } \end{aligned}$	8^{\prime}	$6^{1 / 4}{ }^{\prime \prime}$ RC 16^{\prime} wide_	$\begin{aligned} & \text { 3-span con., } \\ & 44^{\prime}, 55^{\prime}, \\ & 44^{\prime} . \end{aligned}$	$\begin{gathered} 0^{\circ} \text { skew, } 2 \\ \text { rollers, } 2 \\ \text { plates. } \end{gathered}$	Monolithic RC.	Static, dynamic, crawl.	39.
California									
Sacramento Ruad at Bryte Bend.	3	$9^{\prime} 2^{\prime \prime}$ deep, box is trapezoidal, 26^{\prime} wide at bottom.	17^{\prime} -	$10^{\prime \prime}$ RC_-	One simple span, 145^{\prime}.	0° skew, pinned.	Composite steel box girder and slab.	Dynamic, crawl.	No rpt.
Route 680/580 separation (old 107/5), Dublin.	2	4.5' deep, 15' floor beam spacing.	23^{\prime}	$38^{\prime \prime}$ and $7 / 16^{\prime \prime}$ stecl deck plate, $1_{4}^{\prime \prime \prime}$ and $2^{\prime \prime}$ epoxy and PMS; closed trapezoidal ribs, 5.5' overhangs.	4-span con., $75^{\prime}, 85^{\prime}$, $85^{\prime}, 75^{\prime}$	0° skew, pinned.	Orthotropic steel deck plate.	Static (comcentrated multiple axle and superposition loads).	$\begin{array}{r} 9,10 \\ 13 \\ 14 . \end{array}$
Harrison Street, Oakland.	5	$4^{\prime} 10^{\prime \prime}$ deep -	$7^{\prime} 3^{\prime \prime}$	633 ${ }^{\prime \prime}$ RC	One simple span, 80^{\prime}.	0° skew, pinned.	RC box girder bridge with and without diaphragms.	Dynamic crawl, 57 kip Euclid.	15,16.
Webber Creek near Placerville.	4	$8^{\prime} 9^{\prime \prime}$ deep	$9^{\prime} 4^{\prime \prime}$	71/4' ${ }^{\prime \prime}$ RC	Four simple spans.	0° skew, pinned.	Composite .-.-	Static and dynamic, crawl.	7.
San Leandro Creek Bridge.	3	36WF230...	11^{\prime}	$8^{\prime \prime} \mathrm{RC} 33{ }^{\prime}$ wide	23-span con., 63^{\prime} each 3d span hinged	0° skew -	Noncomposite.	1)ynamic.-.	48, 49.
Vacaville		Deck plate only 34^{\prime} wide.		7/16" deck plate, T-stiffeners at $18^{\prime \prime}$ o.c. with plate $15^{\prime \prime}$ by $1 / 4^{\prime \prime}$ butt flange $10^{\prime \prime}$ by $1 / 2^{\prime \prime}$ skew, transverse bar stiffencrs $5^{\prime \prime}$ by $5 / 16^{\prime \prime}$ at 1^{\prime} intervals.	Five spans, 26^{\prime} each.	30° skew, pinned.	Orthotropic, steel deck.	Static, dynamic.	8.
Webber Creek Bridge.	4	Top flange $14^{\prime \prime}$ by $11^{1 / 4^{\prime \prime}}$, web $94^{\prime \prime}$ by 3/8' ${ }^{\prime \prime}$, bottom flange $18^{\prime \prime}$ by $13_{4}^{\prime \prime \prime}$.	$9^{\prime} 4^{\prime \prime}$.	$7^{1 / 4}{ }^{\prime \prime} \mathrm{RC}$	Two simple spans, 13.5', $135 .{ }^{\prime}$	0° skew, pinned.	Comporite...-	Crawl-...-	41.

Connecticut									
South Road over I-84, Farmington.	3	7^{\prime} to 12^{\prime} deep at pier.	19.25'	$91 / 2^{\prime \prime}$ min. RC haunched $111^{\prime \prime}{ }^{\prime \prime}$ at girders, 48.5^{\prime} wide, 5.5^{\prime} sidewalk, 40^{\prime} rdwy.	$\begin{aligned} & \text { 2-span con., } \\ & 175^{\prime}, 175^{\prime} . \end{aligned}$	Radial supports spherical bridges at pier, rockers at abutments.	Welded noncomposite curved girder, radius $=$ $1,040^{\prime}$.	Dead load, static LL.	74.
District of Columbia									
Bridge No. 516 ramp from 11th St., S.W. onto O St., S.W.		7^{\prime} by $4^{\prime} 9^{\prime \prime}$.--		$7^{\prime \prime}$ to $8^{\prime \prime}$ lightweight RC......-	2-span con., $53^{\prime}, 72^{\prime}$, $\mathrm{C}_{\mathrm{L}} \mathrm{S}$ to N	19° roller, 8° fixed, 47° roller, S to N.	Curved RC box beams.	Static 15-ton truck.	43.
Bridge No. 1205, Theodore Roosevelt Bridge approach structure.	4	Web $35^{\prime \prime}$ by $58^{\prime \prime}$, flange $18^{\prime \prime}$ by $34^{\prime \prime}$ to $258^{\prime \prime}$.	$7^{\prime} 2^{\prime \prime}$	$7^{\prime \prime} \mathrm{RC} 2 \frac{1}{2} 2^{\prime \prime}$ bituminous surface, 26^{\prime} wide.	3 -span con., $41^{\prime}, 100^{\prime}$, 95^{\prime} (inside girder) W to E.	25° roller, 54° roller, 46° fixed, 12° roller, W to E.	Steel curved plate girder.	Static-------	21.
Bridge No. 1206 Theodore Roosevelt Bridge approach structure.	4	$\begin{aligned} & \text { Web } 35^{\prime \prime} \text { by } 5 / 8^{\prime \prime} \text {, } \\ & \text { flange } 18^{\prime \prime} \text { by } 3^{\prime \prime} \\ & \text { to } 25 / 8^{\prime \prime} \text {. } \end{aligned}$	$8^{\prime} 1^{\prime \prime}$	$7^{\prime \prime}$ RC, $2 \frac{1}{1 / 2^{\prime \prime}}$ bituminous surface, 27^{\prime} wide.	$\begin{aligned} & \text { 2-span con., } \\ & 81^{\prime}, 59^{\prime} \\ & \text { (inside } \\ & \text { girder) } \mathrm{E} \\ & \text { to } \mathrm{W} \text {. } \end{aligned}$	24° roller, 7° fixed, 22° roller, E to W.	Steel curved plate girder.	Static 15-ton truck.	21.
Florida									
U.S. 19 Suwanee River.	6	AASHO type IV .-.	$5^{\prime} 2^{1 / 2^{\prime \prime}}$	$7^{\prime \prime} \mathrm{RC}$ with $2^{\prime \prime} \mathrm{AC}$ surfacing, 28^{\prime} wide.	$\begin{aligned} & \text { 2-span con., } \\ & 120^{\prime}, 120^{\prime} . \end{aligned}$	0° skew sliding, raker-type bearings.	120 p.c.f. lightweight concrete deck and girders.	HS20 dynamic and static.	67, 73.
Idaho									
U.S. 95 over Skookumchuck Creek near White Bird.	5	Folded plate girders 5^{\prime} deep.	$7^{\prime} 11^{3 / 4^{\prime \prime}}$	$6{ }^{1 / 2^{\prime \prime}}$ R $\mathrm{RC} 39^{\prime} 8^{\prime \prime}$ wide...........	One simple span, 70'.	15° skew, elastomeric bearing pads.	Cast-in-place deck monolithic with precast girders; resultant girders are trapezoidal, spaced box girders.	Static	No rpt.

Test site and date	Bridge deseription								Reference
	Girders								
	$\begin{aligned} & \text { Num- } \\ & \text { ber } \end{aligned}$	Size	Spacing	eck or sia		Supports	Remar	Test loadings	
Iowa-Contimued									
Des Moines River Bridge 1958.	6	$60^{\prime \prime}$ -	6^{\prime} -	$6{ }^{1 / 4^{\prime \prime}}$ RC 30^{\prime} wide	One simple span, 100^{\prime}.	0° skew	Prestressed posttensioned.	Crawl, dynamic, static.	50, 51.
Holcomb Test, Bridge No. 1.	2 2	24WF76, CP $6^{\prime \prime}$ by $3 / 8^{\prime \prime}$ by 20^{\prime}. 27WF94, CP 81/2'1 by $1^{\prime \prime}$ by 29^{\prime}.	$\begin{aligned} & 9^{\prime} 8_{1 / 4^{\prime \prime}} \\ & 9^{\prime} 8^{1 / 4^{\prime \prime}}-\ldots \end{aligned}$	$8.63^{\prime \prime} \mathrm{RC}, 30^{\prime}$ wide_ dond	Simple span 41.25^{\prime} do		Composite	Static .-...- do .	38. Do.
Holcomb Test, Bridge No. 2.	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	33WF130, CP 10' by $7 / 8^{\prime \prime}$ by $44^{\prime} 6^{\prime \prime}$ 36 WF 194, CP 11' by $13 / 8^{\prime \prime}$ by 47^{\prime}.	$9^{\prime} 8^{1 / 4^{\prime \prime}}--$-. do_	30^{\prime} by $8.07^{\prime \prime}$.- - do.	Simple span 71.25^{\prime} -.-.- do_		Composite --- - - do o.--	Static_do	38. Do.
Miller's Creek 1956.	2 2	27WF94 ext 30 WF 116 int.	$8^{\prime} 11^{\prime \prime}$	$8^{\prime \prime}$ RC 28^{\prime} wide.	$\begin{aligned} & \text { 3-span con., } \\ & 55^{\prime}, 70^{\prime}, \\ & 55^{\prime} . \end{aligned}$		Composite.--	Crawl, dynamic, static.	58.
Skunk River 1957.	2 4	33WF141 and 33 WF 152 ext. 36WF194 int.	$9^{\prime} 4^{\prime \prime}$.	$8^{1 / 2^{\prime \prime}}$ RC 48^{\prime} wide	$\begin{aligned} & \text { 3-span con., } \\ & 73^{\prime}, 94^{\prime}, \\ & 73^{\prime} . \end{aligned}$	0° skew	Composite..	Crawl, dynamic, static.	40.
Wapsipinicon Road 1956.	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	33WF125 ext 36 WF160 int.	$\begin{gathered} 8^{\prime} 5^{\prime \prime}, 6^{\prime} 3^{\prime \prime} \\ 8^{\prime} 5^{\prime \prime} \end{gathered}$	$8^{\prime \prime}$ RC 24^{\prime} wide	$\begin{aligned} & \text { 5-span con., } \\ & 73^{\prime}, 94^{\prime} \\ & 94^{\prime}, 94^{\prime} \\ & 73^{\prime} . \end{aligned}$	0° skew	Noncomposite.	Crawl, dynamic, static.	58.
Maryland									
I-83N over Bunker Hill Road.	8	33WF161 ext 33WF141 int.	$6^{\prime} 7^{\prime \prime}$	$7^{\prime \prime} \mathrm{RC} 42^{\prime}$ wide	$\begin{aligned} & \text { Three simple } \\ & \text { spans, } 27^{\prime} \text {, } \\ & 47^{\prime}, 22^{\prime} . \end{aligned}$	0° skew	Noncomposite test span is 47^{\prime} span only.	Dynamic, random (24 hours).	36.
I-83S over Bunker Hill Road.	8	$\begin{aligned} & 24 \text { WF76 with } 12^{\prime \prime} \\ & \text { by } 11 / 16^{\prime \prime} \text { by } 33^{\prime} \\ & \text { CP. } \end{aligned}$	$5^{\prime} 11^{\prime \prime}$ -	$7^{\prime \prime}$ RC $39{ }^{\prime}$ wide	Three simple spans, 27^{\prime}, $47^{\prime}, 22^{\prime}$.	0° skew	Composite spiral shear connectors, test span is 47' span only.	Dynamic, random (24 hours).	36.

18	ค	$\begin{gathered} \text { 今i } \\ \text { ஆ } \end{gathered}$	苓	8	永	\bigcirc	－i	－	\bigcirc
輀	令			䔍	范				$\frac{\dot{3}}{\frac{1}{y}}$
	$\begin{aligned} & \frac{8}{8} \\ & \frac{0}{6} \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \frac{3}{0} \\ & \frac{1}{1 n} \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & B \\ & \frac{3}{U} \\ & 8 \\ & 8 \end{aligned}$			8 $\%$ $\%$ $\%$ $\%$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{3}{0} \\ & \frac{8}{x} \\ & 8 \\ & i 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { 合 } \\ & 8 \\ & 8 \end{aligned}$
				－		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & i \end{aligned}$	$$		$\begin{aligned} & 1 \\ & \vdots \\ & \text { in } \end{aligned}$
	$\stackrel{i}{i}$	$\begin{aligned} & \hline \\ & \vdots \end{aligned}$	$\begin{aligned} & \\ & \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \infty \end{aligned}$			$\begin{aligned} \\ \\ \vdots \\ \text { io } \end{aligned}$	is	i	10
0	\sim	$\stackrel{\sim}{\sim}$	18			\propto	－	－	r

\because	४	B	$\begin{aligned} & \dot{3} \\ & \stackrel{y}{z} \\ & 0 \\ & \text { B } \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$		$$	B	8	$\begin{aligned} & \dot{3} \\ & \dot{y y} \\ & 0 \\ & \text { 号 } \end{aligned}$	0	\％
	莫											
$\begin{aligned} & \dot{y} y \\ & 0.0 \\ & 0 \\ & 0 \\ & z \\ & Z \end{aligned}$					$\begin{aligned} & \text { s } \\ & \substack{0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0} \end{aligned}$							
1 0 0 0 0 8	$\begin{gathered} \vdots \\ \vdots \\ \vdots \\ \frac{0}{0} \\ \frac{1}{120} \\ 0 \end{gathered}$	$\begin{aligned} & 3 \\ & \frac{3}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \\ \\ 3 \\ 3 \\ \frac{y}{0} \\ 8 \\ 8 \end{gathered}$	0 0 0 0 0	8 0 0 80 8	 $\stackrel{\infty}{\infty}$	$\begin{aligned} & 3 \\ & \frac{y}{10} \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \\ & \\ & 1 \\ & 1 \\ & 0 \\ & \frac{y}{n} \\ & 8 \\ & 8 \end{aligned}$	B 0 0 告	$\begin{aligned} & 1 \\ & \frac{0}{8} \\ & \frac{0}{0} \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \frac{3}{0} \\ & \frac{4}{4} \\ & 8 \\ & 8 \end{aligned}$	
						$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & \text { 言合 } \\ & \text { 第 } \\ & \text { 突 } \end{aligned}$
$\stackrel{\text { ® }}{6}$ i	$\begin{aligned} & \frac{3}{3} \\ & \text { In } \\ & \text { i } \end{aligned}$			O in in	육 i	$\begin{aligned} & \frac{1}{\tilde{w}} \\ & \frac{1}{n} \\ & \text { i } \end{aligned}$		$\begin{aligned} & \frac{5}{\frac{5}{n}} \\ & \text { 추 } \\ & \text { in } \end{aligned}$	0 a ix in		亲	$\begin{aligned} & \hat{y} \\ & \text { i } \\ & \text { in } \end{aligned}$
	$\begin{array}{r\|} \hline \\ \vdots \\ \vdots \\ \vdots \\ \text { is } \end{array}$				$\begin{aligned} \\ \text { is is } \end{aligned}$	it is		$\begin{array}{r} 1 \\ \vdots \\ \vdots \\ \text { ì } \\ \text { io } \end{array}$	$\dot{1}$ －		is is	$\begin{array}{r} i \\ \text { - } \\ \hline \end{array}$
				B				$\frac{8}{2}$				\sum_{0}^{8}
	\sim	${ }^{\sim}$										
$\begin{array}{ll} 1 \\ \infty \\ 10 \\ 0 \\ 0 & 0 \\ 1 & 10 \\ & 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & =1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \frac{1}{a} \\ & \frac{1}{1} \\ & \text { on } \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & 0 \\ & i \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ \infty \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 10 \\ 10 \\ \hline \end{gathered}$		$\begin{aligned} & 1 \\ & \underset{1}{\infty} \\ & \underset{\sim}{1} \\ & \frac{0}{2} \\ & \frac{0}{9} \end{aligned}$	$\begin{aligned} & 1 \\ & \underset{1}{1} \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$			$\begin{aligned} & 1 \\ & \alpha \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	

iTest site and date	Bridge description								Reference
	Giirders			Deck or slab	Spans	Supports	Remarks	Test loadings	
	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	Size	Spacing						
Michigan--Continued									
$\begin{aligned} & \text { B5-81-11-8- } \\ & 1957 . \end{aligned}$		$28^{\prime \prime}$ T-beam .-...-.	$6^{\prime} 21^{\prime \frac{1}{\prime \prime}}$	$8^{\prime \prime}$ slab_-	$\begin{gathered} 4 \text {-span con., } \\ 39,53^{\prime} \\ 53^{\prime}, 39^{\prime} . \end{gathered}$	0° skew		Crawl, dynamic, static.	56.
$\begin{aligned} & \text { B8-58-7-26- } \\ & 1956 . \end{aligned}$	3	36WF150_-...-	6^{\prime}.	$7^{\prime \prime} \mathrm{RC}$	Three simple spans, 70^{\prime}, $60^{\prime}, 72^{\prime}$.	28° skew -	Composite .--	Crawl, dynamic, static.	Norpt.
Fennville.---.--	7	36WF182 steel web diaphragms $28^{\prime \prime}$ by $38^{\prime \prime \prime}$ with 2L's $3^{\prime \prime}$ by $3^{\prime \prime}$ by $3 s^{\prime \prime}$ top and bottom.	$5^{\prime} 214^{\prime \prime \prime}{ }^{\prime \prime}-$	71/8' ${ }^{\prime \prime}$ RC, 33^{\prime} wide.	$\begin{gathered} \text { Six simple } \\ \text { spans, } \\ 58^{\prime} 5^{\prime \prime}, \\ 59^{\prime} 3^{\prime \prime} \\ 59^{\prime} 3^{\prime \prime} \\ 59^{\prime} 3^{\prime \prime} \\ 59^{\prime} 3^{\prime \prime}, \\ 58^{\prime} 5^{\prime \prime} \end{gathered}$	0° skew . .	Five spans noncomposite, one span composite.	Static, dynamic.	24, 25.
Jackson Bypass Bridge.	12	Plate girders $50^{\prime \prime}$ deep with CP.	$4^{\prime} 2^{11_{4}^{\prime \prime}}$	Two 29' rdwys.	Eight spans: $72^{\prime} 6^{\prime \prime}$ 92^{\prime} $74^{\prime} \ldots$ $84^{\prime} 3^{\prime \prime}$ $84^{\prime} 3^{\prime \prime}$ $76^{\prime} 3^{\prime \prime}$ $81^{\prime} 9^{\prime \prime}$ 76^{\prime}			Dynamic, creep.	24.
$\begin{aligned} & \text { X3-16-7-26- } \\ & 1956 . \end{aligned}$	2	36WF170 36 W F230		$7^{\prime \prime}$ slab	$\begin{aligned} & \text { 3-span con., } \\ & 65^{\prime}, 53^{\prime}, \\ & 67^{\prime} . \end{aligned}$	30° skew	Composite.-	Crawl, dynamic, static.	No rpt.
$\begin{aligned} & \text { X3-33-6-1- } \\ & 1957 . \end{aligned}$	3	36WF170	$5^{\prime} 4^{\prime \prime}$ -	$71 / 2^{\prime \prime} \mathrm{RC}$	One simple span 61'.	0° skew -	Composite.	Crawl, dynamic, static.	56.
Minnesota									
$\text { I- } 35 \mathrm{~W} \text {, }$ Bloomington.	8	30WF108 with 18WF42.7 diaphragms.		$6^{\prime \prime} \mathrm{RC}$ deck, 38^{\prime} wide_	3 -span con., $38^{\prime}, 61^{\prime}, 38^{\prime}$.	0° skew, pinned.	Composite...	Random traffic and controlled static and dynamic.	12.
$\begin{gathered} \text { No. } 6440- \\ 1952 . \end{gathered}$	8	36WF150		$61 / 2^{\prime \prime} \mathrm{RC}, 27^{\prime}$ wide..	$\begin{gathered} \text { 6-span con., } \\ 85^{\prime}, 100^{\prime}, \\ 100^{\prime}, 100^{\prime}, \\ 10 n^{\prime} 85^{\prime} \end{gathered}$	0° skew	Composite..	Dynamic, static.	78.

Nebraska									
Loup River Bridge.	5	$36 \mathrm{WF}, 14^{\prime \prime}$ by $3 / 8^{\prime \prime}$ CP piers 1 and 6 ; $18^{\prime \prime}$ by $3 / 8^{\prime \prime}$ CP piers 2 and 5 ; spans 1 and 7 36WF150; spans 2 and 6-36WF194; spans 3 and 536WF230; span 4-36WF230.	$5^{\prime} 11^{\prime \prime}$ centers	71/2' ${ }^{\prime \prime}$ RC deck, 21^{\prime} clear rdwy .-	7-span cantilever type; length: 72^{\prime}, $105^{\prime}, 105^{\prime}$, $115^{\prime}, 105^{\prime}$, $105^{\prime}, 72^{\prime}$, includes cantilevered and suspended spans.	No skew simple supports, pinned hangers.	Nonecm- posite $\mathrm{H}-$ 12.5 design built in 1934.	Static, dynamic, H-15 H-15-S12	18.
New York									
Routes 5 and 13, Chittenango.	6	21WF112, CP 20^{\prime} by $11 / 8^{\prime \prime}$ top, 24 by $1 \frac{1}{8^{\prime \prime}}$ bottom, $10^{\prime \prime}$ by $30^{\prime \prime}$ precompressed concrete in tension flange.	$8^{\prime} 8^{\prime \prime}$.	71/2' ${ }^{\prime \prime}$ RC deck, $55^{\prime} 4^{\prime \prime}$ wide	One simple span 79^{\prime}	$29^{\circ} 11^{\prime}$ skew elastomeric bearings.	Monolithic deck, haunches and web protection preflex girders.	Dead load only.	No rpt.
Hulls Falls Road, Keene.	4	$\begin{aligned} & 60^{\prime \prime} \text { deep, size } \\ & \text { varies. } \end{aligned}$	$8^{\prime} 8^{\prime \prime}$	$7^{\prime \prime} \mathrm{RC}$ deck $28^{\prime} 10^{\prime \prime}$ wide with $4^{\prime \prime}$ wearing surface.	One curved simple span, length $=$ 123^{\prime}, radius at $\mathrm{C}_{\mathrm{L}}=477^{\prime}$.	Radial--.--	Composite deck.	Dead load static LL.	5.
$\begin{aligned} & \text { I-540 Ramp } \\ & \text { CBW, } \\ & \text { Rensselaer. } \end{aligned}$	4	$\begin{aligned} & 60^{\prime \prime} \text { deep, size } \\ & \text { varies. } \end{aligned}$		$71 / 2^{\prime \prime} \mathrm{RCC}$ deck, $30^{\prime} 6^{\prime \prime}$ wide	One curved simple span, length at $C_{L}=95^{\prime}$, radius at $\mathrm{C}_{\mathrm{L}}=162^{\prime}$	Radial - .	Composite deck.	Dead load static and dynamic LL.	22.
$\begin{aligned} & \text { I-540 Ramp } \\ & \text { C43, } \\ & \text { Rensselaer. } \end{aligned}$	5	$\begin{aligned} & 60^{\prime \prime} \text { deep, size } \\ & \text { varies. } \end{aligned}$	$7^{\prime} 9^{\prime \prime}$	$7^{1 / 1 / 2^{\prime \prime}}$ RC deeck $37^{\prime} 6^{\prime \prime}$	$\begin{gathered} \text { 2-span con., } \\ \text { radius }= \\ 265.5^{\prime} \\ \text { length }=2 \\ \text { at } 100^{\prime} . \end{gathered}$	Radial	Composite deck.	Dead load static and dynamic LL.	23.
I-490, Rochester -	10	$3^{\prime} 1^{\prime \prime}$ by $10^{\prime \prime}$ RC.----		$7^{\prime \prime}$ R RC deck, $59^{\prime} 6^{\prime \prime}$ wide $\ldots \ldots$	4-span con., $35^{\prime}, 60^{\prime}$, $60^{\prime}, 35^{\prime}$	$14^{\circ} 35^{\prime}$ skew	Monolithic high strength reinforcing steel.	crawl Dynamic, crawl.	2, 4.

Test site and date	Bridge deseription								Reference
	Girclers				Spans	Supports	Remarks	Test loadings	
	$\begin{aligned} & \text { Num } \\ & \text { ber } \end{aligned}$	Size	Spacing	俍					
New York Continued									
I-490, Rochester-	7	$4^{\prime} 11^{\prime \prime}$ by $10^{\prime \prime}$ RC...	$7^{\prime} 11^{\prime \prime}$ -	$7^{\prime \prime}$ RC deck, 55'2'2 ${ }^{\prime \prime}$ wide	Simple span $65^{\prime} 10^{\prime \prime}$.	$14^{\circ} 20^{\prime}$ skew -	Monolithic high strength reinforcing steel.	Dynamic, crawl.	2, 4.
Ohio									
Ohio Highway Department Test Bridge.		WF beams	$6^{\prime} 11^{\prime \prime}-$	$7.75^{\prime \prime} \mathrm{RC}, 32^{\prime} \text { wide..-- }$	Con. span_---	0° skew	Noncomposite.	Static--	37.
Oklahoma									
I-40, Canadian County.	4 4	24WF68, spans 1 and 5 . 24WF84, spans 2 and 4 .	$7^{\prime} 8^{\prime \prime}$ $7^{\prime} 8^{\prime \prime}$	$6.5^{\prime \prime} \mathrm{RC}, 24^{\prime}$ rdwy, two $1^{\prime} 6^{\prime \prime}$ curbs with steel rail.	Two simple spans and 3 -span con., $32^{\prime}, 59^{\prime}$, $59^{\prime}, 59{ }^{\prime}$ 32^{\prime}.	0° skew	Noncomposite.	Dynamic, crawl, design load H15.	No rpt.
U.S. 64, Arkansas River, Pawnee-Osage Counties.	4	$84^{\prime \prime}$ by $1 / 2^{\prime \prime}$.--		$7^{\prime \prime}$ RC, 27^{\prime} rdwy, $1^{\prime} 6^{\prime \prime}$ curb left, 4 median right.	Simple span, 160^{\prime}.	0° skew----	Composite, plate girders.	Dynamic, crawl design load H20.	No rpt.
U.S. 64, over State Highway 97, Tulsa County.	6	$48^{\prime \prime}$ by $5 / 16^{\prime \prime}$----....--	8^{\prime}	7. $5^{\prime \prime} \mathrm{RC}, 43^{\prime}$ rdwy, two 1^{\prime} curbs and rails.	2-span con., $84^{\prime} 3^{\prime \prime}$ and $79^{\prime} 3^{\prime \prime}$.	0° skew--	Composite, plate girders.	Dynamic, crawl, design H20-S16.	No. rpt.
I-244 Mingo Creek, Tulsa County.	9	$42^{\prime \prime}$ by $/ 16{ }^{\prime \prime}$---.-.-.		7. $5^{\prime \prime} \mathrm{RC}, 73^{\prime}$ rdwy	Three spans, $64^{\prime}, 80^{\prime}$, 64^{\prime}.	77° skew	Composite, plate girders.	Dynamic, crawl H20S16 PPM 20-4.	No rpt.
Oregon									
North Dillard Bridge, Pacific Highway, Bridge No. 2555, Douglas	2	5.9^{\prime} to 9.2^{\prime} deep, 20^{\prime} floor beam spacing.	26.5'	$61 / 2^{\prime \prime}$ concrete deck, 30^{\prime} rdwy 3.5 ' walk each side.	$\begin{aligned} & 3 \text {-span con., } \\ & 122^{\prime}, 160^{\prime}, \\ & 122^{\prime} . \end{aligned}$	0° skew, pinned.	Composite for positive LL moment.	H20-S16-44 dynamic.	20.

Test site and date	Bridge dasaription								Reference
	(iirders			Deck or slab	Spans	Supports	Remarks	Test loading ${ }_{\text {s }}$	
	Number	Size	Spacing						
Pemnsylvania-Continued									
Drehersville	5	4^{\prime} by $33^{\prime \prime} \mathrm{PC}$ box beams.	$7^{\prime} 2^{\prime \prime}$	$7 / 2^{\prime \prime}$ IRC deck, slab $35^{\prime} 6^{\prime \prime}$ wide, rdwy 30^{\prime} wide.	$\begin{aligned} & \text { One simple } \\ & \text { span, } \\ & 61^{\prime} 6^{\prime \prime} . \end{aligned}$	0° skew .		Crawl, speed runs with FHWA test vehicle.	$\begin{gathered} 17,30 \\ 71 . \end{gathered}$
Fort Loudon 1948.		14' Warren through truss.		7' ${ }^{\prime \prime}$ RC, $23{ }^{\prime}$ wide \ldots	Simple span, 111^{\prime}.	0° skew -	Warren through truss.	Crawl, dynamic, braking run.	70.
Hazleton -.-.----	5	4^{\prime} by $42^{\prime \prime}$ PC box beams.	$9^{\prime} 6^{\prime \prime}$	$7_{1 / 2^{\prime \prime}}$ RC deck, slab $45^{\prime} 6^{\prime \prime}$ wide, rdwy 40^{\prime} wide.	Simple span $69^{\prime} 7^{\prime \prime}$.	$11 / 2^{\circ}$ skew		Crawl, speed runs with FHWA test vehicle.	No rpt.
Lehighton	6	$\begin{gathered} 24^{\prime \prime} \text { by } 45^{\prime \prime} \mathrm{PC} \\ \text { I-beams. } \end{gathered}$	$6^{\prime} 9^{\prime \prime}$	$71 / 2^{\prime \prime}$ RC deck, slab 38^{\prime} wide, rdwy 36^{\prime} wide.	Simple span, $71^{\prime} 6^{\prime \prime}$.	0° skew	Curb parapet on one side only, other side completely free; tested with and without midspan diaphragms.	Crawl, speed runs with FHWA test vehicle.	No rpt.
Philadelphia	5	4^{\prime} by $42^{\prime \prime}$ PC box beams.	$9^{\prime} 6^{\prime \prime}$.	$71 / 2^{\prime \prime} \mathrm{RC}$ deck, slab $45^{\prime} 6^{\prime}$ wide, rdwy 40^{\prime} wide.	Simple span, $71^{\prime} 9^{\prime \prime}$.	3° skew	Bridge tested with and without midspan diaphragms	Crawl, speed runs with FHWA test vehicle.	47, 71.
Smithfield Street Bridge, Pittsburgh.		Trusses 25^{\prime} o.c., floor beams $9^{\prime} 211_{2}^{\prime \prime}$ o.c.		$7 / 16^{\prime \prime}$ thick aluminum plate longitudinally stiffened with closed ribs, $7^{\prime \prime}$ deep and $16 \frac{1}{8^{\prime \prime}}$ o.c., $21^{1 / 2^{\prime}}$ wide rdwy (does not participate with floor beams or trusses).	Trusses 360 (2 spans), floor beams 25^{\prime} (simple span), orthotropic deck $9^{\prime} 22_{2}^{\prime \prime}{ }^{\prime \prime}$ (3-span con.).	0° skew, pinned.	Tests involved aluminum orthotropic deck only.	Static and moving load from 20 -ton tractortrailer truck.	62, 68.

Test site and date	Bridge description								Reference
	Girders			Deck or slab	Spans	Supports	Remarks	Test loadings	
	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	Size	Spacing						
Tennessee-Continued									
$\begin{aligned} & \text { I-40 over State } \\ & \text { Route } 61, \\ & \text { Harriman. } \end{aligned}$	34	Left lane $46^{\prime \prime}$ by $3 / 8^{\prime \prime}$ web plate.	$9^{\prime}$$9^{\prime} 3^{\prime \prime}$	$71 / 2^{\prime \prime} \mathrm{RC}$ deck, left lane $31^{\prime} 3^{\prime \prime}$ wide, 4^{\prime} and $4^{\prime} 9^{\prime \prime}$ overhang. Right lane 30^{\prime} wide, $4^{\prime} 6^{\prime \prime}$ and $5^{\prime} 3^{\prime \prime}$ overhang.	7 span con., $55^{\prime}, 72^{\prime}$, $11^{\prime}, 115^{\prime}$, $110^{\prime}, 72^{\prime}$, 60^{\prime}.	$44^{\circ} 40^{\prime} \text { skew, }$ pinned.	Composite.--	Construction traffic.	No ript.
		Right lane $46^{\prime \prime}$ by $3 / 8^{\prime \prime}$ web plate, flange varies from $12^{\prime \prime}$ by $58^{\prime \prime}$ to $14^{\prime \prime}$ by $2^{\prime \prime}$.							
I-40 over Campbell Station Road, Knox County.	4	$1^{\prime} 6^{\prime \prime}$ by $4^{\prime} 5^{\prime \prime}$ both lanes.	$7^{\prime} 6^{\prime \prime}$	$7^{\prime \prime}$ slab, 40^{\prime} rdwy, two $4^{\prime} 2^{\prime \prime}$ overhang both lanes.	3-span con., $41^{\prime}, 60^{\prime}$, 41^{\prime} both lanes.	60° skew, selflubricating plates.	Cast-in-place concrete.	Interstate traffic.	No ret.
I-40 over Everett Road, Knox County.	4	Left lane $3^{\prime} 10^{\prime \prime}$ by $1^{\prime} 6^{\prime \prime}$.	$5^{\prime} 2^{\prime \prime}$	$7^{\prime \prime}$ slab, 30^{\prime} rdwy, two $4^{\prime} 2^{\prime \prime}$ overhang.	$\begin{aligned} & \text { 3-span con., } \\ & 47^{\prime}, 66^{\prime} \\ & 47^{\prime} . \end{aligned}$	75° skew selflubricating plates.	Cast-in-place concrete.	Interstate traffic.	No rpt.
	3	Right lane $1^{\prime \prime} 6^{\prime \prime}$ by 3^{\prime}.	$7^{\prime} 4^{\prime \prime}$	$\begin{aligned} & 7^{\prime \prime} \text { slab, } 30^{\prime} \text { rdwy, } 4^{\prime} 3^{\prime \prime} \\ & \text { overhang. } \end{aligned}$	$58^{\prime}, 72^{\prime}, 58^{\prime}$.				
Broadway relocated over Tazewell Pike, Knoxville.	9	36WF135	$9^{\prime} 6^{\prime \prime}$	$7^{\prime \prime} \mathrm{RC}$ deck, two $3^{\prime} 3^{\prime \prime}$ overhang, two 36^{\prime} rdwy.	$\begin{gathered} \text { 3-span con., } \\ 63^{\prime} 2^{1 / 2^{\prime \prime}} \\ 93^{\prime}, \\ 39^{\prime} 2^{1} 1^{\prime \prime} \end{gathered}$	46° skew, pinned.	Composite.-	Traffic.-...	No rpt.
I-640 over Broadway (present), Knoxville.	5 3	Left lane $281 / 2^{\prime \prime}$ by $3 / 8^{\prime \prime}$ web. Right lane $28 \frac{1}{2} 2^{\prime \prime}$ by $3 / 8^{\prime \prime}$ web.	Varies $12^{\prime} 3^{\prime \prime}$	$8 \frac{1}{2} 2^{\prime \prime} \mathrm{RC}$ deck, two $3^{\prime} 7^{1 / 2^{\prime \prime}}$ overhang. 42' rdwy, $3^{\prime} 7^{\prime \prime} \mathrm{RR}$ overhang, two $3^{\prime} 7^{1 / 2^{\prime \prime}}$ overhang.	$\begin{aligned} & \text { 3-span con., } \\ & 31^{\prime} 9^{\prime \prime} \\ & 57^{\prime} 6^{\prime \prime} \\ & 36^{\prime} 9^{\prime \prime} \\ & 29^{\prime} 9^{\prime \prime}, 57^{\prime} 6^{\prime \prime} \\ & 35^{\prime \prime} \end{aligned}$	$\begin{gathered} 57^{\circ} 40^{\prime} 40^{\prime \prime} \\ \text { skew. } \end{gathered}$	Composite_-	Construction	No rpt.
I-640 over Broadway (relocated) Knoxville.	5 6	Left lane $42^{\prime \prime}$ by $3 / 8^{\prime \prime}$ web. Right lane $42^{\prime \prime}$ by $3 / 8^{\prime \prime}$ web.	$7^{\prime} 8^{33} 8^{\prime \prime}--$ $8^{\prime} \mathbf{1}^{\prime \prime}$	$7^{\prime \prime}$ RC deck, 42^{\prime} rdwy, overhang varies. 52^{\prime} rdwy, overhang varies	$\begin{aligned} & \text { 2-span con., } \\ & 93^{\prime} 6^{\prime \prime}, 85^{\prime} \end{aligned}$	$63^{\circ} 8^{\prime}$ skew, pinned.	Composite A36 steel.	Construction traffic.	No ret.

$\begin{aligned} & \dot{3} \\ & \text { 艺 } \\ & 0 \\ & \text { B } \end{aligned}$	$\begin{aligned} & \dot{\overrightarrow{7}} \\ & \text { 合 } \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \dot{\hat{H}} \\ & \dot{甘} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \dot{\hat{Z}} \\ & \dot{甘} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \dot{\hat{Z}} \\ & \dot{Z} \\ & \dot{Z} \end{aligned}$	च	$=$	Ξ
			㵄				
			$\begin{aligned} & \text { s. } \\ & \text { sig } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { Bo } \\ & 0 \\ & 0 \end{aligned}$				
		$\begin{aligned} & \text { ì } \\ & \text { H. } \\ & \text { os } \\ & \text { on } \\ & \text { oin } \end{aligned}$					
							$\text { -әр!̣м , } 8 z^{\text {'чәәр DI }} \text {, } 2$
i	$\stackrel{\text { en }}{\stackrel{y}{E}}$	$\begin{array}{ll} \text { io } & \text { io } \\ \text { is } & i o \end{array}$	$\begin{array}{r} 1 \\ \\ \\ \infty \\ \infty \\ \infty \\ \infty \end{array}$	$\begin{array}{rl} i & \\ i & \\ i & i \\ i & i \\ i & i \end{array}$	$\begin{array}{rl} \vdots & \\ \vdots & \vdots \\ i & i \\ i & i \end{array}$	ל）	\sum_{i}
		$\begin{aligned} & 90 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{gathered} E \\ E \\ E \\ E \\ E \\ E \\ E \end{gathered}$	
＋	10	$\cdots \infty$	10 H	$10 \quad 10$	H	＋	＋

Test site and date	Bridge description								Reference
	Girders			Deck or slab	Spans	Supports	Remarks	Test loadings	
	$\underset{\text { ber }}{\text { Num- }}$	Size	Spacing						
Tennessee-Continued									
U.S. Highway 41 A over Elk River.	4	$\begin{aligned} & 18^{\prime \prime} \text { by } 49^{\prime \prime} \text { RC T- } \\ & \text { beams. } \end{aligned}$	5^{\prime} -	$8^{\prime \prime} \mathrm{RC}$ deck, 24^{\prime} wide	Six simple spans, one at 28^{\prime} and five at 53^{\prime}.	60° skew, bearing pads.	Monolithic (T-beam) H-15 design.	Static test to yielding.	11.
Texas									
I-10 over T. \& N.O. Railroad, El Paso.		33WF130, 33WF141_	8^{\prime} centers-.---	$61 / 2^{\prime \prime}$ RC $5 \overline{2}^{\prime}$ rdwy	$\begin{aligned} & \text { 5-span con., } \\ & 50^{\prime}, 65^{\prime} \\ & 65^{\prime}, 65^{\prime} \\ & 50^{\prime} \end{aligned}$	$43^{\circ} 27^{\prime}$ skew	Noncomposite.	Dynamic.-. -	29.
U.S. 80 over P.S \& F. Railroad, El Paso.		27 WF and $30 \mathrm{WF} \ldots$	$7.28{ }^{\prime}$ centers	61/2" RC, two 22^{\prime} rdwy with 5^{\prime} median.	3-span con., $40^{\prime}, 51^{\prime}$, 40^{\prime} and five simple spans 39^{\prime}, $30^{\prime}, 37^{\prime}$, $40^{\prime}, 34^{\prime}$.	Various skew--	Noncomposite.	Dynamic...	28.
1-35 near Hillsboro.	3	2.375^{\prime} wide	8.875' centers_	61/2'1 ${ }^{\prime \prime}$ RC, 24^{\prime} rdwy -...........	4-span con., haunched RC girders, $55^{\prime}, 8 S^{\prime}$, $88^{\prime}, 55^{\prime}$.	$30^{\circ} 22^{\prime}$ skew --	2^{\prime} wide sidewalks.	Dynamic....	54.
$\begin{aligned} & \text { U.S. } 75 \text { over SL } \\ & \text { SF Railroad } \\ & \text { near Sherman. } \end{aligned}$		$\begin{aligned} & 34^{\prime \prime} \text { and } 40^{\prime \prime} \mathrm{PC} \\ & \text { beams. } \end{aligned}$	7'3' ${ }^{\prime \prime}$ centers -	$3^{\prime \prime}$ prestressed, precast deck panels and $3^{\prime \prime}$ cast-in-place RC top.	Five simple spans 40^{\prime}, $50^{\prime}, 50^{\prime}$, $50^{\prime}, 40^{\prime}$.	$19^{\circ} 38^{\prime}$ skew.-.	Composite for LL	Dynamic.-.	28.
Virginia									
Cedar Creek Bridge, I-81.	5	$3^{\prime} 9^{\prime \prime}$ PC AASHO type III I-beams, 4,000 p.s.i.		$8^{\prime \prime} \mathrm{RC}, 30^{\prime}$ rdwy plus $2^{\prime} 7^{\prime \prime}$ and $3^{\prime} 7^{\prime \prime}$ curbs and sidewalks.	$\begin{aligned} & \text { Six simple } \\ & \text { spans, } \\ & 60^{\prime} 1^{\prime \prime}, 60^{\prime} \\ & 85^{\prime}, 60^{\prime} \\ & 60^{\prime}, 60^{\prime} 1^{\prime \prime} . \end{aligned}$	$\begin{aligned} & 10^{\circ} 54^{\prime} 7^{\prime \prime} \\ & \text { skew, } 4 \% \\ & \text { grade. } \end{aligned}$	Composite.-	Dynamic to crawl.	No rpt.

Hazel River Bridge, Route 729, 10.5 miles north of Culpeper.	4	36WF150 in spans 1 and $3,36 \mathrm{WF} 160$ in span 2 with CP $10^{\prime \prime}$ by $3 / 8^{\prime \prime}$ in spans 1 and 3 , CP $101 / 2^{\prime \prime}$ by $5 / 8^{\prime \prime}$ in span 3.	$7^{\prime} 8^{\prime \prime}$	$71 / 2^{\prime \prime}$ RC deck, 24^{\prime} wide rdwy -	$\begin{aligned} & \text { Three simple } \\ & \text { spans, } 62^{\prime} 7^{\prime \prime} \\ & 67^{\prime} 6^{\prime \prime}, \\ & 62^{\prime} 7^{\prime \prime} \text {. } \end{aligned}$	0° skew, 0.18% grade, pinned.	Composite...	Dynamic to crawl.	45.
New Market Bridge, Route 793 over I-81 south of New Market.	4	36 WF135 CP over center portion $11^{\prime \prime}$ by $3 / 4^{\prime \prime}$ plate on ext. girders, $11^{\prime \prime}$ by $7 / 8^{\prime \prime}$ plate on int. girders.	$8^{\prime} 4^{\prime \prime}$	$8^{\prime \prime} \mathrm{RC}$ deck, 24^{\prime} rdwy	Six simple spans 63.5^{\prime}, four at 61^{\prime}, 48^{\prime}.	$\begin{gathered} 0^{\circ} \text { skew } \\ 5.44 \% \\ \text { grade, } \\ \text { pinned. } \end{gathered}$	Composite.-	Dynamic to crawl.	52.
Appomattox River Bridge, Route 36 north of Peterburg.	5	Aluminum (6061T6) modules of triangular shape $6^{\prime} 9^{\prime \prime}$ wide by $4^{\prime} 10^{\prime \prime}$ high.		71/2" lightweight concrete, 115 p.c.f., 28^{\prime} rdwy.	One simple span, 97^{\prime}.	0° skew, 1% grade, pinned.	Composite...	Dynamic to crawl.	46.
Dumfries Bridge, Route 95 over relocated Quantico Creek and Route 629.	6	```Two 36WF230 ext. with CP 15" by 3/4", four 36 WF194 int. with CP 101/2'' by 1/\mp@code{8''}```	$8^{\prime} 4^{\prime \prime}$	$8^{\prime \prime} \mathrm{RC}, 42^{\prime}$ rdwy plus two $2^{\prime} 8^{\prime \prime}$ sidewalks.	Four simple spans, three at $69^{\prime} 4^{\prime \prime}$, one at 76^{\prime}.	$3^{\circ} 46^{\prime}$ skew, 3% grade.	Composite...	Dynamic to crawl.	No rpt.
Weyer's Cave Bridge, Route 276 north of Weyer's Cave.	4	$\begin{gathered} 36 \text { WF } 160 \text { with CP } \\ 1012^{\prime \prime} \text { by } 5 / 8^{\prime \prime} . \end{gathered}$	$7^{\prime} 8^{\prime \prime}$	$71 / 2^{\prime \prime \prime}$ RC deck, 24^{\prime} rdwy.	Six simple spans at $67^{\prime} 7^{\prime \prime}$.	0° skew, very flat vertical curve, pinned.	Composite	Dynamic to crawl.	44.
West Virginia									
U.S. 50A over Ohio River, St. Marys.		Truss stiffened suspension bridge with floor beams and stringers (not gaged).		$3^{\prime \prime}$ concrete filled steel grid, 27^{\prime} wide.	$\begin{gathered} 380^{\prime}, 700^{\prime}, \\ 380^{\prime} . \end{gathered}$	Eyebar chain suspension bridge.	Duplicate of failed Pt. Pleasant Bridge, design LL, $1,400 \mathrm{lb}$. per lin. ft., 4,200 1b. concentrated load.	FHWA vehicle loaded to 44,000 lb.; also resonant, harmonic vibration.	72.

(1) "The AASHO Road Test, Report 4-Bridge Research," HRB Special Report No. 61D, 1962.
(2) Antoni, C. M., and Corbisiero, J. A., "Instrumentation and Testing of Concrete Bridge Reinforced with High Strength Steel," Rescarch Report No. 68-3, Bureau of Physical Research, New York State Department of Transportation, September 1968.
(S) Baldwin, J. W., Jr., "Impact Study of a Steel I-Beam Highway Bridge," University of Missouri Bullctin, Engineering Experiment Station Series No. 58, October 1964.
(4) Beal, D. B., "Performance of Concrete Bridges Reinforced with High-Strength Stcel-First Interim Report," Research Report 69-16, Engineering Research and Development Bureau, New York State Dcpartment of Transportation, March 1970.
(5) Beal, D. B., and Kissane, R. J., "Field Testing of Horizontally Curved Steel Girder Bridges-First Interim Report," Research Report 69-11, ER \& DB, New Fork State Department of Transportation, April 1970.
(6) Biggs, J. MI., and Suer, H. S., "Vibration Measurements on Simple-Span Bridges," HRB Bulletin No. 124, Washington, D.C., 1956. (() Bouwkamp, J. G., Brown, C. B., Scheffey, C. F., and Yaghmai, S., "Behavior of a Single Span Composite Girder Bridge," Research Report No. SESM 65-5, University of California, Berkeley, August 1965.
(8) Bouwkamp, J. G., "Behavior of a Skew Steel Deck Bridge under Static and Dynamic Loads," Structures and Materials Research Report No. SESM 6.5-2, University of California, Berkeley, June 1965.
(9) Bouwkamp, J. G. and Powell, G. H., "Structural Behavior of an Orthotropic Steel Deck Bridge," Structural and Materials Research Report No. SESM 67-27, vols. 1 and 2, University of California, Berkeley, November 1967.
(10) Bouwkamp, J. G. and Powell, G. H., "Structural Behavior of an Orthotropic Steel Deck Bridge," Highway Research Record No. 29.5, Washington, D.C., 1969.
(11) Burdette, E. G. and Goodpasture, W., "Full Scale Bridge Tests, A Report on Research in Progress," Civil Engineering Series No. 2, University of Tennessee, February 1970.
(12) Christiano, Paul; Goodmar, Lawrence E.; and Sun, ChangNing, "Bridge Strain History and Diaphragm Stiffening Investigation," Department of Civrl Engineering, University of Minnesota, June 1970.
(18) Davis, R. E., "Field Testing of an Orthotropic Steel Deck Plate Bridge," SsR 1-67, Bridge Department, California Division of Highways, March 1968.
(14) Davis, R. E., "Field Testing of an Orthotropic Steel Deck Bridge," Highway Research Record No. 295, Washington, D.C., 1969.
(15) Davis, R. E., Kozak, G. W., and Scheffey, C. F., " Structural Behavior of a Box Girder Bridge," Bridge Department, California Division of Highways, May 1965.
(16) Davis, R. E., Kozak, G. W., and Scheffey, C. F., "Structural Behavior of a Concrete Box Girder Bridge," Highway Research Record No. 76, Washington, D.C., 1965.
(17) Douglas, W. J. and VanHorn, D. A., "Lateral Distribution of Static Loads in a Prestressed Concrete Box-Beam Bridge-Drehersville Bridge," Fritz Laboratory Report 315.1, August 1966.
(18) "Dynamic Tests of Two Cantilever Type Deck Steel Girder Bridges," Bridge Design Section, Nebraska Department of Roads, August 1961.
(19) "Dynamic Tests on a Rolled-Beam Composite Continuous Span Bridge-Part 2," Impact and Vibration Study, South Dakota Highway Commission, October 1961.
(20) Edgerton, R. C. and Beecroft, G. W., "Dynamic Studies of Two Continuous Plate Girder-Bridges," HRB Bulletin 124, 1956, pp. 33-46.
(21) Ellerman, F. W., "Experimental Investigation of Horizontally Curved Steel Plate Girder Bridges," Department of Highways and Traffic, Government of the District of Columbia, Washington, D.C., June 1968.
(22) "Field Testing of IIorizontally Curved Steel Girder Bridges," Second Interim Report, New York State Department of Transportation (to be published).
(23) "Field Testing of Horizontally Curved Steel Girder Bridges," Third Interim Report, New York Slate Department of Transportation (to be published).
(24) Foster, G. M. and Oehler, L. T., Vibration and Deflection of Rolled Beam and Plate Girder Bridges," HRB Bulletin No. 124, 1956. (25) Foster, G. M., "Tests on a Rolled Beam Bridge Using H20-S16 Loading," HRB Rescarch Report No. 14-B, 1952.
(26) Furr, Howard L., and Jones, Harry L., "Study of In-Service Bridges Constructed with Prestressed Panel Subdecks," University of Texas Report No. 145-1.
(27) Gamble, W. L., "Field Investigation of a Continuous Composite Prestressed I-Bcam Highway Bridge Located in Jefferson County, Illinois," Civil Engincering Studies, Structural Research Series No. 360, Department of Civil Engineering, University of Illinois, June 1970.
(28) Gersch, B. C., "Dynamic Test of P \& SF Railroad Overpass,

El Paso, Texas," Report No. 64-2, Bridge Division, Texas Highway Department, September 1964.
(29) Gersch, B. C., "Dynamic Testing Program of the T \& NO Railroad Overpass, El Paso County, Texas," Report No. 64-5, Bridge Division, Texas Highway Department, September 1964.
(30) Guilford, A. A., and VanHorn, D. A., Lateral Distribution of Dynamic Loads in a Prestressed Concrete Box-Beam Bridge-Drehersville Bridge," Fritz Laboratory Report 315.2, February 1967.
(31) Guilford, A. A., and VanHorn, D. A., Lateral Distribution of Vehicular Loads in a Prestressed Concrete Box-Beam Bridge-Berwick Bridge," Fritz Laboratory Report 315.4, October 1967.
(32) Guilford, A. A., and VanHorn, D. A., "Lateral Distribution of Vehicular Loads in a Prestressed Concrete Box-Beam Bridge- White Haven Bridge," Fritz Laboratory Report 315.7, August 1968.
(33) Gutzwiller, Lee, and Scholer, "Precast Prestressed Concrete for Bridge Decks," Approved for publication by the Highway Research Board, 1970.
(34) Hayes, J. M., and Sbarounis, J. A., "Vibration Study of ThreeSpan Continuous I-Beam Bridge," HRB Bulletin 124, Washington, D.C.
(35) Heins, C. P., Sartwell, A. D., and Looney, C. T. G., "A Study of a Three-Span Continuous Bridge Structure," Report No. 21, Civil Enginecring Department, University of Maryland, June 1968.
(36) Heins, C. P., and Sartwell, A. D., "Tabulation of 24 Hour Dynamic Strain Data on Four Simple Span Girder Slab Bridge Structures," Report No. 29, Civil Engincering Department, University of Maryland, June 1969.
(37) Hindman, W. S., and Vandergrift, L. E., "Load Distribution over Continuous Deck Type Bridge Floor Systems," Engineering Experiment Slation Bulletin No. 122, Ohio State University, May 1945. (38) Holcomb, R. M., "Distribution of Loads in Beam-and-Slab Bridges," Ph. D. Dissertation, Iowa State Universily, 1956.
(39) Hudson, F. M., "Investigation of a Full-Size Continuous Concrete Highway Bridge," Part I, II, Alabama Highway ResearchHRR No. 24, June 1967.
(40) Hulsbos, C. L., and Linger, D. A., "Dynamic Tests of a ThreeSpan Continuous I-Beam Highway Bridge," HRB Bulletin 279, 1961, pp. 18-46.
(41) "Instrumentation for Webber Creek Bridge Tests," State of California, Department of Public Works, Division of Highways Materials and Research Department, 1965.
(42) "Impact Study of a Simple I-Beam Span of a Highway Bridge," Missouri State Highway Department, Division of Bridges, August 1958.
(43) Kim, J. B., Smith, N. G., and Close, R. A., "Investigation of a Horizontally Curved Reinforced Concrete Box Beam," Government of the District of Columbia, Department of Highways and Traffic, Washington, D.C., Dec. 5, 1965.
(44) Kinnier, H. L., "A Dynamic Stress Study of the Weyer's Cave Bridge, Vibration Survey of Composite Bridges," Virginia Council of Highway Investigation and Research, Sept. 16, 1963.
(45) Kinnier, H. L., and McKeel, W. T., "A Dynamic Stress Study of the Hazel River Bridge, Vibration Survey of Composite Bridges," Virginia Council of Highway Investigation and Research, Oct. 8, 1964.
(46) Kinnier, H. L. and McKeel, W. T., "A Dynamic Stress Study" of the Aluminum Bridge over the Appomattox River at Petersburg, Vibration Survey of Composite Bridges," Virginia Council of Highway Investigation and Research, Nov. 9, 1965.
(47) Lin, Cheng-Shung, and VanHorn, D. A., "The Effect of Midspan Diaphragms on Load Distribution in a Prestressed Concrete BoxBeam Bridge—Philadelphia Bridge," Fritz Laboratory Report 315.6, June 1968.
(48) Lin, T. Y. and Horonjeff, R., et al., "Investigation of Stresses in the San Leandro Creek Bridge," Research Report No. 13, Institute of Transportation and Traffic, University of California, May 1953.
(49) Lin, T. Y., and Horonjeff, R., "Load Distribution Between Girders on San Leandro Creek Bridge," HRB Research Report No. 14-B, 1952.
(50) Linger, D. A., and Hulsbos, C. L., "Forced Vibration of Continuous Highway Bridges," HRB Bulletin No. 339, 1962, pp. 1-22.
(51) Linger, D. A., and Hulsbos, C. L., "Dynamic Load Distribution in Continuous I-Beam Highway Bridges," Highway Research Record No. 34, 1963, pp. 47-69.
(52) McKeel, W. T., and Kinnier, H. L., "A Dynamic Stress Study of a Composite Span Bridge with Conventional and Elastomeric Bearings, Vibration Survey of Composite Bridges," Highway Research Council, Feb. 11, 1970.
(58) Motarjemi, D., and VanHorn, D. A., "Theoretical Analysis of Load Distribution in Prestressed Concrete Box-Beam Bridges," Fritz Laboratory Report 315.9, October 1969.
(54) Newton, Jere G., and Walker, Larry G., "Experimental Use of High Strength Reinforcing Steel," Report No. 25-1F, Bridge Division, Texas Highway Department, May 1967.
(55) Novak, M. E., Heins, C. P., and Looney, C. T. G., "Induced Dynamic Strains in Bridge Structures due to Random Truck Loadings," Report No. 18, Civil Engineering Department, University of Maryland, February 1968.
(56) Oehler, L. T., "Vibration Susceptibilities of Various Highway Bridge Types," Proceedings ASCE, Journal of the Structural Division, vol. 83, No. ST4, July 1957.
(57) Paxson, G. S., "Load Distribution on Highway Bridges Having Adequate Transverse Diaphragms," Highway Research Record, 1952.
(58) Prentzas, E. G., "Dynamic Behavior of Two Continuous IBeam Bridges", Iowa Highway Research Board Bulletin No. 14, Iowa State Highway Commission, 1958.
(59) Reilly, R. J., and Looney, C. T. G., "Dynamic Behavior of Highway Bridges," Civil Engincering Department, University of Maryland, April 1966.
(60) Reynolds, R. J., and Gamble, W. L., "Field Investigation of Prestressed Reinforced Concrete Highway Bridges-Instrumentation for Long-Term Field Investigations," Civil Engineering Studies, Structural Research Series No. 327, Department of Civil Engincering, University of Illinois, October 1967.
(61) Roesli, A., Smilova, A., Ekberg, C. E., Jr., and Eney, W. J. "Field Tests on a Prestressed Concrete Multi-Beam Bridge," HRB Proceedings, vol. 35, 1956, pp. 152-171.
(62) Rogerson, W. M., Sharp, M. L., Stemler, J. R., and Sommer,
R. J., "Aluminum Orthotropic Bridge Deck," Civil Engincering, ASCE, November 1967.
(63) Sartwell, A. D., Ifeins, C. P., and Looney, C. T. C., "The Analytical and Experimental Study of a simple Girder Slab Bridge," Report No. 17, Civil Enginecring Department, University of Maryland, February 1968.
(64) Sartwell, A. D., and Heins, C. P., "Tabulation of Dynamic Strain Data on a Girder-Slab Bridge Structure During Seven Continuous Days," Report No. 31, Civil Engineering Dcpartment, University of Maryland, September 1969.
(65) Sartwell, A. D., and Heins, C. P., "Tabulation of Dynamic Strain Data on a Three-Span Continuous Bridge Strueture," Report No. 33, Civil Engineering Department, University of Maryland, November 1969.
(66) Schaffer, Thomas, and TanHorn, D. A., "Strnetural Response of a 45° Skew Prestressed Concrete Box-Girder Highway Bridge Subjected to Vehicular Loading-Brookville Bridge," Fritz Laboratory Report 315.4, October 1967.
(67) Self, M. W., "Portland Cement Concrete-Prestressed Concrete Bridges," EIES-DR 5025, University of Florida, July 1969.
(68) Sharp, Maurice, L., "Field Tests of Aluminum Orthotropic Bridge Deck," Journal of the Structural Division, Prociedings ASCE November 1969.
(69) Svotelis, R. A., Heins, C. P., and Looner, C. T. G., "Analytical and Experimental Study of a Through Truss Bridge," Report No. 16, Civil Engineering Department, University of Maryland, June 1967.
(ro) Van Eenam, N., "Live-Load Stress Measurement on Fort Loudon Bridge, Final Report," HRB Proceedings, vol. 31, 1952, pp. 36-61.
(r1) VanHorn, D. A., "Structural Behavior Characteristics of Prestressed Concrete Box-Beam Bridges," Fritz Laboratory Report 315.8, December 1969.
(72) Varney, R. F. and Viner, J. G., "The St. Mary's Bridge," Eight Minute Film, The Dynamic Response of the Eyebar Chain Suspension Bridge over the Ohio River, Proceedings of 41 st Shock and Vibration Symposium, 1970.
(73) Varney, R. F., "Dynamic Interaction of a Three Axle Vehicle and a Two Span, Partially Continuous Prestressed Concrete Bridge," Highway Research Record No. 295, Washington, D.C., 1969.
(7/4) Victor, R. F., "Structural Behavior of the South Road Curved Girder Bridge," Connecticut Department of Transportation (to be published).
(75) Walker, W. H., "First Progress Report-Investigation of Dynamic Stresses in Highway Bridges," Department of Civil Engineering, University of Illinois, October 1967.
(76) Walker, W. H., and Ruhl, J. A., "Dynamic Stresses in Highway Bridges-Interim Report," Structural Research Series Report, Department of Civil Engineering, University of Illinois (in preparation for June 1971).
(77) Walker W. H., "Dynamic Stresses in Highway Bridges, Final Report," Structural Research Series Report, Department of Civil Engineering, University of Illinois (in preparation for June 1972).
(78) Wise, J. A. "Dynamics of Highway Bridges," HRB Proceedings, vol. 32, Washington, D.C., 1953, pp. 180-187.

Highway Research and Development Reports Available from the National Technical Information Service

The following highway research and development reports are available from the National Technical Information Service (formerly the Clearinghouse for Federal Scientific and Technical Information), Sills Building, 5285 Port Royal Road, Springfield, Va. 22151. Paper copics are priced at $\$ 3$ each and mirrofiche copies at 95 cents each. To order, send the stock number of each report desired and a check or money order to the National Technical Information Service. Prepayment is required.

Other highway research and development reports available from the National Technical Information Service will be announced in future issues.

STRUCTURES

Stock No.

1—B 203699

J'B 203703

〕13 203706
IR 203709
1'! 203714

1'13 203741
PB 203742
PP 203744

PB 204043

PB 204044
PB 204046
PB 204048
PB 204049

PB 204074

13 204078
113 204080
]I3 204269

113 204273

113 204302
1)13 204303

13] 204365

T1] 204369

P13 204372
PB 204373
PB 204508

1’1) 20 ± 528

31; 204529

Static and Fatigue Strengths of Beams Containing Prestressed Concrete Tension Elements (Final).
Pavement Design and Performance Studies (Final Report on Phase C)
Loading History Study of Two Highway Bridges in Virginia (Final Report).
Analysis of Bridge Grids (Final ReportPart II).
Evaluation of Electric Logging and Gamma Ray Device for Bridge Boring Interpretation.
Field Performance Evaluation of Soil Pressure Cells.
Scale Model Study-Vehicle Collision into Fixed Object (Final Report).
Theoretical Analysis of a Flexible Pavement Model.
A Study of the Wear Characteristics and Skid Resistance of Selected Asphalt Concrete Overlays.
Route U.S. 66 Condition Survey.
In-situ Measurements of Friction and Bearing Correlated with Instrumented Pile Tests. Analysis and Tests of Small Curved Steel Girder Bridges 1, 2, 3, and 4 .
Torsional Strength of Prestressed Concrete Bridge Girders.
Analysis for Stress and Deformation of a Horizontally Curved Girder Bridge Through a Geometric Structural Model. Pavement Deflection as Pavement Overlay Criteria-Phase I (Final).
Fatigue of Flexible Pavements.
Behavior and Performance of Aggregate-Soil Systems Under Repeated Loads.
Continuous Composite Beams Under Fatigue Loading.
Safety Provisions for Support Structures on Orerhead Sign Bridges-Volumes 1-5.
Supplementary Studies of Safety Provisions on Overhead Sign Bridges-Volume 6. Pavement Roughness and Serviceability (Interim Report 3).
San Fernando Earthquake (Soils and Geologic Investigations in Relation to Highway Damage).
Non-destructive Testing of Concrete.
Skid Test Trailer Calibration Project Guidelines.
Vehicle-in-Motion Weighing Experiment at Restored AASHO Road Test Facility Weekend Recreational Travel: Development of a Concept.
Flexbeam Redirectional System for the Modular Crash Cushion.

Stock No.
PB 204532
Methods for Reducing Friction Between Concrete Slabs and Cement Treated Subbases
PB 204541
PB 204512

PB 204545 Study of Girder Deflections During Bridge
Transverse Reinforcement of Continuous, Through-shaped Concrete Railroad Struc tures. Deck Construction.

MATERIALS

Stock No.
PB 203701
PB 203702

PB 203736
PB 203737

PB 203740
PB 204041
PB 204042

PB 204071
PB 204082
PB 204271
PB 204272

PB 204357

PB 204358

PB 204359
PB 204360
PB 204361

PB $20+366$
PB 204367

PB 204368

PB 204370 cation (Final Report).
Relationship of Fatigue to the Tensile Stiffness of Asphaltic Concrete (Final Report on Phase 1: Laboratory Investigation).
Bond and Durability of Conerete and Resinous Overlays.
Investigation of "D" Cracking in PCC Pavements (Laboratory Phase I).
Highway Research Report-Relative Compaction Study, Final Report.
Correlation of Seismis. Velocities with Earthwork Factors (Interim Report),
Concrete Durability Studies. Potentially Reactive Carbonate Rocks.
Frost Penetration Under Alabama Highways.
Bridge Deck Performance in Virginia.
Highway Marking Paints
Research Summary Report on the Effects of Studded Tires.
Autogenous Accelerated Curing of Con crete Cylinders.

Part I-Strength Results.
Part II-Development of a Moisture Measuring Method.
Part III-Temperature Relationships. Part IV-Moisture Relationships.
Part V-ASTM Cooperative Testing Program with Additional Emphasis on the Influence of Container and Storage Characteristics (Final).
Evaluation of Aggregate Sources of Glacial Origin.
Application of Instrumental Methods for Evaluating Highway Materials (Use of Infrared Spectrophotometry in Acceptance Testing Membrane Curing Compounds for Concrete).
An Electrical Method for Evaluating Bridge Deck Coatings.
Relative Stabilizing Effect of Various Limes

Stock No. on Clayey Soils.

PB 204530

PB 204586

Stock No.
PB 201421
PB 202020
PB 203707
PB 203743
PB 20 ± 047
PB 204072

PB 204073
PB 204079
PB 201081
PB 204084
PB 204466
PB 204467
PB 204531

Stock No.
PB 204050
PB 204083
PB 204371

PB 204533
Investigation of Soil Damping on Fullscale Test Piles.
Instrumental Color Measurement of Retroreflective Highway Sign Materials.

TRAFFIC

Iligh-Mast Lighting.
An Analysis of Ramp Service Time Distributions by Monte Carlo Simulation.
The Jericho Turnpike Lighting Study.
A Theory of Driver Motivation-Phase 2. Study of Rural Freeway Emergency Communications for Stranded Motorists
Qualitative Analysis of Wrong-way Driving in Texas
A Study of Freeway Traffic Information Reported via Commercial Radio.
A Study of the Operating Characteristics of Intersections.
Wrong Way IV-Highway Reflectors.
Bus Detector Development Program (Final). Studies of the Driver as a Control Element Phase 2. Phase 3.
Judgment of Vehicle Speeds and Traffic Patterns-Phase IV.

ENVIRONMENT

Vegetation Control on Roadsides and Similar Areas-1970 Anmual Report.
Flood Protection at Bridge Crossings.
A Preliminary Report on Small Streams Flood Frequency in Maine.
Dynamics of Automobiles during Brake Applications-Validation of a Computer Simulation.
PB 204583 Development of Analytical Aids for Minimization of Single Vehicle Accidents.

FIELD TESTING

Stock No.
PB 202263
Composite Report of Variations in Aggregate Gradation Production for Highway Construction in Nebraska (Final Report).
PB 203700 Slipperiness of Highway Pavements, Phase I (Final Report)
PB 203708 A Digital Data Recording System Developed for use with the Virginia Model-2 SkidResistance Measurement Vehicle
PB 204270 Development of a System for High-Speed Measurement of Pavement Roughness (Final Report).

RESEARCH IMPLEMENTATION

Stock No.
PB 184068 Proceedings: National Conference, Committee on Electronics. AASHO, Austin, Tex., May 7, 8, 1968.
PB 187733 Proceedings: National Conference, Committee on Electronies, AASHO, Seattle, Wash., May 6, 7, 1969.
PB 190618 Trends in Motorization and Highway Programs in 16 European Countries.
PB 204511 Proceedings: National Conference, Committee on Computer Technology (formerly Committee on Electronics).

PLANNING

Stock No.
PB 204045 Right-of-way Effects on Controlled Access Type Highway on a Farming Area in

PB 204534

Colorado and Fayette Counties, Texas. The Effect of Right-of-way Acquisition on Farm and Ranch Operating Units.

PUBLICATIONS of the Federal Highway Administration

A list of articles in past issues of Public Roads and title sheets for volumes 24-35 are available upon request from the Federal Highway Administration, U.S. Department of Transportation, Washington, D.C. 20590.

The following publications are sold by the Superintendent of Doc'uments, Government Printing Office, Washington, D.C. 20402. Orders should be sent direct to the Superintendent of Documents. I'repayment is required.
Accidents on Main Rural Highways-Related to Speed, Driver, and Vehicle (1964). 35 cents.
Aggregate Gradation for Highways : Simplification, Standardization, and Uniform Application, and A New Graphical Evaluation Chart (1962). 25 cents.
America's Lifelines-Federal Aid for Highways (1969). 35 cents. Analysis and Modeling of Relationships between Accidents and the Geometric and Traffic Characteristics of the Interstate System (1969). \$1.00.
A Book Aloout Space (1968). $7 \overline{0}$ cents. Bridge Inspector's Training Manual (1970). \$2.50.
Calibrating \& Testing a Gravity Model for Any Size Urban Area (1968). \$1.00.

Capacity Analysis Techniques for Design of Signalized Intersec-
tions (Reprint of August and October 1967 issues of PUBLIC ROADS, a Journal of Highway Research). 45 cents.
Construction Safety Requirements, Federal Highway Projects (1967). 50 cents.

Corrugated Metal Pipe (1970). 35 cents.
Creating, Organizing, \& Reporting Highway Needs Studies (Highway Planning Technical Report No. 1) (1963). 15 cents. Emergency Application Systems for Power Brake Mechanisms of Highway Trailer Combinations (1970). $\$ 1.00$.
Fiatal and Injury Accident Rates on Federal-Aid and Other Highway Systems, 1968. 45 cents.
Federal-Aid Highway Map (42x6. inches) (1970). \$1.50.
Federal Assistance Available (1971). 10 cents.
Federal Laws, Regulations, and Other Material Relating to Highways (1970). $\$ 2.50$.
The Freeway in the City (1968). \$3.00.
Freeways to Urban Development, A new concent for joint development (1966). 15 cents.
Guidelines for Trip Generation Analysis (1967). 65 cents.
Handbook on Highway Safety Design and Operating Practices (1968). 40 cents.

> Supplement No. 1 (Nov. 1968). 35 cents.
> Supplement No. 2 (Nor. 1969). 40 cents.

The IIighway and its Environment, 3d Annual Awards Competition (1970) . 60 cents.
Highway Beautification Program. Senate Document No. 6, 90th Cong., 1 st sess. (1967). 25 cents.
Highway Condemnation Law and Litigation in the United States (1968) :

Vol. 1-A Survey and Critique. 70 cents.
Vol. 2-State by State Statistical Summary of Reported Highway Condemnation Cases from 1946 through 1961. $\$ 1.75$.
Highway Cost Allocation Study : Supplementary Report, House Document No. 124, 89th Cong., 1st sess. (1965). \$1.00.
Highway Finance 1921-62 (a statistical review by the Office of Planning, Highway Statistics Division) (1964). 15 cents.
Highway Joint Development and Multiple Use (1970). \$1.50. Highway Planning Map Manual (1963). \$1.00.
Highway Research and Development Studies Using Federal-Aid Research and Planning Funds (1969). \$1.50.

Highway Statistics (published annually since 1945) :
$1966, \$ 1.25 ; 1967, \$ 1 . \overline{5} ; 1968, \$ 1.75 ; 1969, \$ 1.75$. (Other year's out of print.)
Highway Statistics, Summary to 196ē (1967). \$1.25.
Highway Transportation (November 1970) 65 cents, (Spring 1971), 60 cents.

Highways and Human Values (Anmal Report for Burean of Public Roads) (1966). 75 cents.
Supplement (1966). 25 cents.
Highways to Beauty (1966). 20 cents.
Highways and Economic and Social Changes (1964). \$1.25.
Hydraulic Engineering Circulars :
No. $\overline{5}$--Hydraulic Charts for the Selection of Highway Culverts (1965). 5 ป̄ cents.
No. 10 -Capacity Charts for the Hydraulic Design of Highway Culverts (1965). \$1.00.
No. 11-Use of Riprap for Bank Protection (1967). 40 cents.
No. 12-Drainage of Highway I'avements (1969). \$1.00.
Hydraulic Design Series :
No. 1-Hydraulies of Bridge Waterways, $2 d$ ed. (1970). $\$ 1.25$.
No. 3-Design Charts for Open-Channel Flow (1961). \$1.50.
No. 4-Design of Roadside Drainage Channels (1965). 65 cents.
Hydraulic Flow Resistance Factors for Corrugated Metal Conduits (1970). 55 cents.
Identification of Rock Types (1960). 20 cents.
Increasing the Traffic-Carrying Capability of Urban Arterial Streets: The Wisconsin Avenue Study (1962). Out of print(Request from Federal Highway Administration).
Interstate System Accident Research Study-1 (1970). \$1.00.
Interstate System Route Log and Finder List (1971). 2.) cents.
Joint Development and Multiple Use (1970). \$1.50.
Labor Compliance Manual for Direct Federal and Federal-Aid Construction, 3 d ed. (1970). \$3.75.
Landslide Investigations (1961). 30 cents.
Manual for Highway Severance Damage Studies (1961). \$1.00.
Manual of Instructions for Construction of Roads and Bridges on Federal Highway Projects (1970). \$3.2\%.
Manual on Uniform Traffic Control Devices for Streets and Highways (1971), \$3.50.
Maximum Safe Speed for Motor Vehicles (1969). $\$ 1.00$.
Modal Split-Documentation of Nine Methods for Estimating Transit Usage (1966). 70 cents.
Motor Carrier Safety Regulations (1968). 4Ј cents.
National Highway Needs. Report, H. Comm. Print 90-22 90th Cong. 2 d sess. (1968). 2 cents. Supplement 10 cents.
The National System of Interstate and Defense Highways (1970). 15 cents.
Overtaking and Passing on Two-Lane Rural Highways - a Literature Review (1967). 20 cents.
Park \& Recreational Facilities (1971). 45 cents.
1'resplitting. A Controlled Blasting Technique for Rock Cuts (1966). 30 cents.

Proposed Program for Scenic Roads \& I'arkways (prepared for the President's Council on Recreation and Natural Beauty), 1966. \$2.75.

Quality Assurance in Highway Construction. (Reprinted from PUBLIC ROADS, A JOURNAL OF HIGHWAY RESEARCH, vol. 35, Nos. 6-11, 1969). 50 cents.
(Continued on reverse side)

United States

Government Printing Office
 PUBLIC DOCUMENTS DEPARTMENT
 WASHINGTON, D.C. 20402

$$
\begin{aligned}
& \text { PENALTY FOR PRIVATE USE TO AVOID } \\
& \text { PAYMENT OF POSTAGE, \$3OO } \\
& \text { U.S. GOVERNMENT PRINTING OFFICE } \\
& \text { POSTAGE AND FEES PAID }
\end{aligned}
$$

OFFICIAL BUSINESS

Abstract

If you do not desire to continue to receive this publication, please check here \square : tear off this label and return it to the above address. Your name will then be removed promptly from the appropriate mailing list.

Publications of the Federal Highway Administration-Continued

Read Before Driving (1969), 15 cents.
Reinforced Concrete Bridge Members-Ultimate Design (1969). 45 cents.
Reinforced Concrete Pipe Culverts-Criteria for Structural Design and Installation (1963). 30 cents.
The Road to Your Success (1970). 70 cents.
Road-User and Personal Property Taxes on Selected Motor Vehicles (1970). 65 cents.
Role of Economic Studies in Urban Transportation Planning (1965). 65 cents.

The Role of Third Structure Taxes in the Highway User Tax Family (1968). $\$ 2.25$.
Safety Rest Area Development (1970). \$1.00.
Necond Annual Highway Beauty Awards Competition (1969). Solents.
Specifications for Aerial Surveys and Mapping by Photogrammetrical Methods for Highways (1968) . \$1.25.

Standard Alphabets for Highway Signs (1966). 30 cents.
Standard Land Use Coding Manual (1965). 50 cents.
Standard Plans for Highway Bridges :
Vol. I-Concrete Superstructures (1968). \$1.25.
Vol. II-Structural Steel Superstructures (1968). \$1.00.
Vol. II I-Timber Bridges (1969). 75 cents.
Vol. IV - Typical Continuous Bridges (1969). $\$ 1.50$.
Vol. V-Typical Pedestrian Bridges (1962). \$1.75.
Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects (1969). \$3.50.
Standard Traffic Control Signs Chart (as defined in the Manual on Uniform Traffic Control Devices for Streets and Highways). $22 \times 34,20$ cents -100 for $\$ 15.00 .11 \times 17,10$ cents -100 for $\$ 5.00$.
Study of Airspace Utilization (1968). 75 cents.
Transition Curves for Highways (1940). $\$ 2.50$.
Transportation Planning Data for Urbanized Areas (1970). . $\$ 9.25$.
Ultrasonic Testing Inspection for Butt Welds in Highway and Railway Bridges (1968). 40 cents.

[^0]: ${ }^{1}$ Presented at the 50th Annual Meeting of the Highway Research Board, Washington, D.C., January 1971, and received HRB Award (for outstanding merit). Award presented to authors at 51st annual meeting, January 1972.
 ${ }^{2}$ Italic numbers in parentheses identify the references isted on page 267.

[^1]: ${ }^{1}$ With analyzer in use-if the driver does not use analyzer when there is no opposing vehicle, safe speed would be as indicated in wiihout analyzer column.

[^2]: ${ }^{1}$ For the 50 States and District of Columbia.

[^3]: Hydraulic Flow Resistance Factors for Corrugated Metal Conduits, Federal High way Administration, U.S. Department of Transportation. Available from Superintendent of Documents, Government Printing Office, Washington, D.C. 20402, for 55 cents.

